
Abmarl
Release 0.2.6

Ephraim Rusu

Aug 21, 2023

CONTENTS

1 What’s New in Abmarl 3
1.1 Absolute Grid Observer . 3
1.2 Maze Placement State . 4
1.3 Building a Gridworld Simulation . 4
1.4 Miscellaneous . 5

2 Design 7
2.1 Creating Agents and Simulations . 8
2.2 Training with an Experiment Configuration . 14
2.3 Debugging . 16
2.4 Visualizing . 16
2.5 Analyzing . 16
2.6 Trainer Prototype . 17

3 GridWorld Simulation Framework 19
3.1 Framework Design . 19
3.2 Built-in Features . 27

4 Featured Use Cases 45
4.1 Emergent Collaborative and Competitive Behavior . 45

5 Installation 55
5.1 User Installation . 55
5.2 Developer Installation . 55

6 Full Tutorials 57
6.1 MultiCorridor . 57
6.2 GridWorld . 63

7 Abmarl API Specification 85
7.1 Abmarl Simulations . 85
7.2 Abmarl Simulation Managers . 87
7.3 Abmarl Wrappers . 88
7.4 Abmarl External Integration . 91
7.5 Abmarl GridWorld Simulation Framework . 93
7.6 Abmarl Trainers . 107

8 Citation 109

Index 111

i

ii

Abmarl, Release 0.2.6

Abmarl is a package for developing Agent-Based Simulations and training them with MultiAgent Reinforcement Learn-
ing (MARL). We provide an intuitive command line interface for engaging with the full workflow of MARL exper-
imentation: training, visualizing, and analyzing agent behavior. We define an Agent-Based Simulation Interface and
Simulation Manager, which control which agents interact with the simulation at each step. We support integration with
popular reinforcement learning simulation interfaces, including gym.Env, MultiAgentEnv, and OpenSpiel. We define
our own GridWorld Simulation Framework for creating custom grid-based Agent Based Simulations.

Abmarl leverages RLlib’s framework for reinforcement learning and extends it to more easily support custom simula-
tions, algorithms, and policies. We enable researchers to rapidly prototype MARL experiments and simulation design
and lower the barrier for pre-existing projects to prototype RL as a potential solution.

CONTENTS 1

Abmarl, Release 0.2.6

2 CONTENTS

CHAPTER

ONE

WHAT’S NEW IN ABMARL

Abmarl version 0.2.6 features the new Absolute Grid Observer, which produces “top-down” observations of the grid
“from the grid’s perspective”; the Maze Placement State component for structuring the initial placement of agents
within a grid while allowing for variation in each episode; and enhanced support for buildling gridworld simulations.

1.1 Absolute Grid Observer

The Single and Multi Grid Observers provide observations of the the grid centered on the observing agent, a view of
the grid “from the agent’s perspective”. Abmarl’s Grid World Simulation Framework now contains the Absolute Grid
Observer, which produces observations of the grid “from the grid’s perspective”. The observation size matches the
size of the grid, and the agent sees itself moving around the grid instead of seeing all the other agents positioned relative
to itself.

Here we show the following state observations for the bottom-left red agent with a view_range of 2 via the Single Grid
Observer and the new Absolute Grid Observer. The Single Grid Observation is sized by the agent’s view range, the
observing agent is in the very center, and all other cells are shown by their relative positions, including out of bounds
cells. The Absolute Grid Observation is sized by the grid, all agents are shown in their actual grid positions, there are
no out of bounds cells, and any cell that the agent cannot see is masked with a -2.

Single Grid Observer, observing agent is shown here as *3
[0, 2, 2, 0, 2],
[0, 2, 0, 0, 0],
[0, 0, *3, 3, 0],
[0, 0, 0, 0, 0],
[-1, -1, -1, -1, -1],

Absolute Grid Observer, observing agent is shown as -1
[-2, -2, -2, -2, -2, -2, -2],
[-2, -2, -2, -2, -2, -2, -2],
[-2, -2, -2, -2, -2, -2, -2],
[0, 2, 2, 0, 2, -2, -2],
[0, 2, 0, 0, 0, -2, -2],
[0, 0, -1, 3, 0, -2, -2],
[0, 0, 0, 0, 0, -2, -2]

3

Abmarl, Release 0.2.6

Fig. 1: Comparing observations for the bottom-left red agent with a view_range of 2. The green agent has an encoding
of 1, the gray agents 2, and the red agents 3.

1.2 Maze Placement State

The Position State supports placing agents in the the grid either (1) according to their initial positions or (2) by randomly
selecting an available cell. The new Maze Placement State supports more structure in initially placing agents. It starts
by partitioning the grid into two types of cells, free or barrier, according to a maze that is generated starting at some
target agent’s position. Agents with free encodings and barrier encodings are then randomly placed in free cells and
barrier cells, respectively. The Maze Placement State component can be configured such that it clusters barrier agents
near the target and scatters free agents away from the target. The clustering is such that all paths to the target are not
blocked. In this way, the grid can be randomized at the start of each episode, while still maintaining some desired
structure.

1.3 Building a Gridworld Simulation

Abmarl’s Gridworld Simulation Framework now supports building the simulation in these ways:

1. Building the simulation by specifying the rows, columns, and agents;

2. Building the simulation from an existing grid;

3. Building the simulation from an array and an object registry; and

4. Building the simulation from a file and an object registry.

Additionally, when building the simulation from a grid, array, or file, you can specify additional agents to build that
are not in those inputs. The builder will combine the content from the grid, array, or file with the extra agents.

4 Chapter 1. What’s New in Abmarl

Abmarl, Release 0.2.6

Fig. 2: Animation showing a target (green) starting at random positions at the beginning of each episode. Barriers
(gray squares) are clustered near the target without blocking all paths to it. Free agents (blue) are scattered far from the
target.

1.4 Miscellaneous

• New built-in Target agent component supports agents having a target agent with which they must overlap.

• New Cross Move Actor allows the agents to move up, down, left, right, or stay in place.

• The All Step Manager supports randomized ordering in the action dictionary.

• The Position State component supports ignoring the overlapping options during random placement. This results
in agents being placed on unique cells.

• Abmarl’s visualize component now supports the --record-only flag, which will save animations without dis-
playing them on screen, useful for when running headless or processing in batch.

• Bugfix with the Super Agent Wrapper enables training with rllib 2.0.

• Abmarl now supports Python 3.9 and 3.10.

• Abmarl now supports gym 0.23.1.

1.4. Miscellaneous 5

Abmarl, Release 0.2.6

6 Chapter 1. What’s New in Abmarl

CHAPTER

TWO

DESIGN

A reinforcement learning experiment in Abmarl contains two interacting components: a Simulation and a Trainer.

The Simulation contains agent(s) who can observe the state (or a substate) of the Simulation and whose actions af-
fect the state of the simulation. The simulation is discrete in time, and at each time step agents can provide actions.
The simulation also produces rewards for each agent that the Trainer can use to train optimal behaviors. The Agent-
Simulation interaction produces state-action-reward tuples (SARs), which can be collected in rollout fragments and
used to optimize agent behaviors.

The Trainer contains policies that map agents’ observations to actions. Policies are one-to-many with agents, meaning
that there can be multiple agents using the same policy. Policies may be heuristic (i.e. coded by the researcher) or
trainable by the RL algorithm.

In Abmarl, the Simulation and Trainer are specified in a single Python configuration file. Once these components are
set up, they are passed as parameters to RLlib’s tune command, which will launch the RLlib application and begin the
training process. The training process will save checkpoints to an output directory, from which the user can visualize
and analyze results. The following diagram demonstrates this workflow.

Fig. 1: Abmarl’s usage workflow. An experiment configuration is used to train agents’ behaviors. The policies and
simulation are saved to an output directory. Behaviors can then be analyzed or visualized from the output directory.

7

Abmarl, Release 0.2.6

2.1 Creating Agents and Simulations

Abmarl provides three interfaces for setting up agent-based simulations.

2.1.1 Agent

First, we have Agents. An agent is an object with an observation and action space. Many practitioners may be ac-
customed to gym.Env’s interface, which defines the observation and action space for the simulation. However, in
heterogeneous multiagent settings, each agent can have different spaces; thus we assign these spaces to the agents and
not the simulation.

An agent can be created like so:

from gym.spaces import Discrete, Box
from abmarl.sim import Agent
agent = Agent(

id='agent0',
observation_space=Box(-1, 1, (2,)),
action_space=Discrete(3),
null_observation=[0, 0],
null_action=0

)

At this level, the Agent is basically a dataclass. We have left it open for our users to extend its features as they see fit.

In Abmarl, agents who are done will be removed from the RL loop–they will no longer provide actions and no longer
report observations and rewards. In some uses cases, such as when using the SuperAgentWrapper or running with
OpenSpiel, agents continue in the loop even after they’re done. To keep the training data from becoming contaminated,
Abmarl provides the ability to specify a null observation and null action for each agent. These null points will be used
in the rare case when a done agent is queried.

2.1.2 Agent Based Simulation

Next, we define an Agent Based Simulation, or ABS for short, with the ususal reset and step functions that we are
used to seeing in RL simulations. These functions, however, do not return anything; the state information must be
obtained from the getters: get_obs, get_reward, get_done, get_all_done, and get_info. The getters take an
agent’s id as input and return the respective information from the simulation’s state. The ABS also contains a dictionary
of agents that “live” in the simulation.

An Agent Based Simulation can be created and used like so:

from abmarl.sim import Agent, AgentBasedSimulation
class MySim(AgentBasedSimulation):

def __init__(self, agents=None, **kwargs):
self.agents = agents

... # Implement the ABS interface

Create a dictionary of agents
agents = {f'agent{i}': Agent(id=f'agent{i}', ...) for i in range(10)}
Create the ABS with the agents
sim = MySim(agents=agents)
sim.reset()
Get the observations

(continues on next page)

8 Chapter 2. Design

Abmarl, Release 0.2.6

(continued from previous page)

obs = {agent.id: sim.get_obs(agent.id) for agent in agents.values()}
Take some random actions
sim.step({agent.id: agent.action_space.sample() for agent in agents.values()})
See the reward for agent3
print(sim.get_reward('agent3'))

Warning: Implementations of AgentBasedSimulation should call finalize at the end of their __init__. Final-
ize ensures that all agents are configured and ready to be used for training.

Note: Instead of treating agents as dataclasses, we could have included the relevant information in the Agent Based
Simulation with various dictionaries. For example, we could have action_spaces and observation_spaces that
maps agents’ ids to their action spaces and observation spaces, respectively. In Abmarl, we favor the dataclass approach
and use it throughout the package and documentation.

2.1.3 Simulation Managers

The Agent Based Simulation interface does not specify an ordering for agents’ interactions with the simulation. This is
left open to give our users maximal flexibility. However, in order to interace with RLlib’s learning library, we provide
a Simulation Manager which specifies the output from reset and step as RLlib expects it. Specifically,

1. Agents that appear in the output dictionary will provide actions at the next step.

2. Agents that are done on this step will not provide actions on the next step.

Simulation managers are open-ended requiring only reset and step with output described above. For convenience,
we have provided three managers: Turn Based, which implements turn-based games; All Step, which has every non-
done agent provide actions at each step; and Dynamic Order, which allows the simulation to decide the agents’ turns
dynamically.

Simluation Managers “wrap” simulations, and they can be used like so:

from abmarl.managers import AllStepManager
from abmarl.sim import AgentBasedSimulation, Agent
class MySim(AgentBasedSimulation):

... # Define some simulation

Instatiate the simulation
sim = MySim(agents=...)
Wrap the simulation with the simulation manager
sim = AllStepManager(sim)
Get the observations for all agents
obs = sim.reset()
Get simulation state for all non-done agents, regardless of which agents
actually contribute an action.
obs, rewards, dones, infos = sim.step({'agent0': 4, 'agent2': [-1, 1]})

Warning: The Dynamic Order Manager must be used with a Dynamic Order Simulation. This allows the simu-
lation to dynamically choose the agents’ turns, but it also requires the simulation to pay attention to the interface

2.1. Creating Agents and Simulations 9

Abmarl, Release 0.2.6

rules. For example, a Dynamic Order Simulation must ensure that at every step there is at least one reported agent
who is not done, unless it is the last turn, which the other managers handle automatically.

2.1.4 Wrappers

Agent Based Simulations can be wrapped to modify incoming and outgoing data. Abmarl’s Wrappers are themselves
AgentBasedSimulations and provide an additional unwrapped property that cascades through potentially many layers
of wrapping to get the original, unwrapped simulation. Abmarl supports several built-in wrappers.

Ravel Discrete Wrapper

The RavelDiscreteWrapper converts observation and action spaces into Discrete spaces and automatically maps data
to and from those spaces. It can convert Discrete, MultiBinary, MultiDiscrete, bounded integer Box, and any nesting
of these observations and actions into Discrete observations and actions by ravelling their values according to numpy’s
ravel_mult_index function. Thus, observations and actions that are represented by (nested) arrays are converted into
unique scalars. For example, see how the following nested space is ravelled to a Discrete space:

from gym.spaces import Dict, MultiBinary, MultiDiscrete, Discrete, Box, Tuple
import numpy as np
from abmarl.sim.wrappers.ravel_discrete_wrapper import ravel_space, ravel
my_space = Dict({

'a': MultiDiscrete([5, 3]),
'b': MultiBinary(4),
'c': Box(np.array([[-2, 6, 3],[0, 0, 1]]), np.array([[2, 12, 5],[2, 4, 2]]),␣

→˓dtype=int),
'd': Dict({

1: Discrete(3),
2: Box(1, 3, (2,), int)

}),
'e': Tuple((

MultiDiscrete([4, 1, 5]),
MultiBinary(2),
Dict({

'my_dict': Discrete(11)
})

)),
'f': Discrete(6),

})
point = {

'a': [3, 1],
'b': [0, 1, 1, 0],
'c': np.array([[0, 7, 5],[1, 3, 1]]),
'd': {1: 2, 2: np.array([1, 3])},
'e': ([1,0,4], [1, 1], {'my_dict': 5}),
'f': 1

}
ravel_space(my_space)
>>> Discrete(107775360000)
ravel(my_space, point)
>>> 74748022765

10 Chapter 2. Design

Abmarl, Release 0.2.6

Warning: Some complex spaces have very high dimensionality. The RavelDiscreteWrapper was designed to work
with tabular RL algorithms, and may not be the best choice for simulations with such complex spaces. Some RL
libraries convert the Discrete space into a one-hot encoding layer, which is not possible for a very high-dimensional
space. In these situations, it is better to either rely on the RL library’s own processing or use Abmarl’s Flatten-
Wrapper.

Flatten Wrapper

The FlattenWrapper flattens observation and action spaces into Box spaces and automatically maps data to and from
it. The FlattenWrapper attempts to keep the dtype of the resulting Box space as integer if it can; otherwise it will cast
up to float. See how the following nested space is flattened:

my_space = Dict({
'a': MultiDiscrete([5, 3]),
'b': MultiBinary(4),
'c': Box(np.array([[-2, 6, 3],[0, 0, 1]]), np.array([[2, 12, 5],[2, 4, 2]]),␣

→˓dtype=int),
'd': Dict({

1: Discrete(3),
2: Box(1, 3, (2,), int)

}),
'e': Tuple((

MultiDiscrete([4, 1, 5]),
MultiBinary(2),
Dict({

'my_dict': Discrete(11)
})

)),
'f': Discrete(6),

})
point = {

'a': [3, 1],
'b': [0, 1, 1, 0],
'c': np.array([[0, 7, 5],[1, 3, 1]]),
'd': {1: 2, 2: np.array([1, 3])},
'e': ([1,0,4], [1, 1], {'my_dict': 5}),
'f': 1

}
flatten_space(my_space)
>>> Box(low=[0, 0, 0, 0, 0, 0, -2, 6, 3, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0],

high=[4, 2, 1, 1, 1, 1, 2, 12, 5, 2, 4, 2, 2, 3, 3, 3, 0, 4, 1, 1, 10, 5],
(22,),
int64) # We maintain the integer type instead of needlessly casting to float.

flatten(my_space, point)
>>> array([3, 1, 0, 1, 1, 0, 0, 7, 5, 1, 3, 1, 2, 1, 3, 1, 0, 4, 1, 1, 5, 1])

Because every subspace has integer type, the resulting Box space has dtype integer.

Warning: Sampling from the flattened space will not produce the same results as sampling from the original space
and then flattening. There may be an issue with casting a float to an integer. Furthermore, the distribution of points

2.1. Creating Agents and Simulations 11

Abmarl, Release 0.2.6

when sampling is not uniform in the original space, which may skew the learning process. It is best practice to first
generate samples using the original space and then to flatten them as needed.

Super Agent Wrapper

The SuperAgentWrapper creates super agents who cover and control multiple agents in the simulation. The super
agents concatenate the observation and action spaces of all their covered agents. In addition, the observation space is
given a mask channel to indicate which of their covered agents is done. This channel is important because the simulation
dynamics change when a covered agent is done but the super agent may still be active. Without this mask, the super
agent would experience completely different simulation dynamics for some of its covered agents with no indication as
to why.

Unless handled carefully, the super agent will report observations for done covered agents. This may contaminate the
training data with an unfair advantage. For example, a dead covered agent should not be able to provide the super agent
with useful information. In order to correct this, the user may supply a null observation for an ObservingAgent. When
a covered agent is done, the SuperAgentWrapper will try to use its null observation going forward.

A super agent’s reward is the sum of its covered agents’ rewards. This is also a point of concern because the sim-
ulation may continue generating rewards or penalties for done agents. Therefore when a covered agent is done, the
SuperAgentWrapper will report a reward of zero for done agents so as to not contaminate the reward for the super
agent.

Furthermore, super agents may still report actions for covered agents that are done. The SuperAgentWrapper filters out
those actions before passing the action dict to the underlying sim.

Finally a super agent is considered done when all of its covered agents are done.

To use the SuperAgentWrapper, simply provide a super_agent_mapping, which maps the super agent’s id to a list of
covered agents, like so:

AllStepManager(
SuperAgentWrapper(

TeamBattleSim.build_sim(
8, 8,
agents=agents,
overlapping=overlap_map,
attack_mapping=attack_map

),
super_agent_mapping = {

'red': [agent.id for agent in agents.values() if agent.encoding == 1],
'blue': [agent.id for agent in agents.values() if agent.encoding == 2],
'green': [agent.id for agent in agents.values() if agent.encoding == 3],
'gray': [agent.id for agent in agents.values() if agent.encoding == 4],

}
)

)

Check out the Super Agent Team Battle example for more details.

12 Chapter 2. Design

https://github.com/LLNL/Abmarl/blob/main/examples/team_battle_super_agent.py

Abmarl, Release 0.2.6

2.1.5 External Integration

Abmarl supports integration with several training libraries through its external wrappers. Each wrapper automatically
handles the interaction between the external library and the underlying simulation.

OpenAI Gym

The GymWrapper can be used for simulations with a single learning agent. This wrapper allows integration with
OpenAI’s gym.Env class with which many RL practitioners are familiar, and many RL libraries support it. There are
no restrictions on the number of entities in the simulation, but there can only be a single learning agent. The observation
space and action space is then inferred from that agent. The reset and step functions operate on the values themselves
as opposed to a dictionary mapping the agents’ ids to the values.

RLlib MultiAgentEnv

The MultiAgentWrapper can be used for multi-agent simulations and connects with RLlib’s MultiAgentEnv class. This
interface is very similar to Abmarl’s Simulation Manager, and the featureset and data format is the same between the
two, so the wrapper is mostly boilerplate. It does explictly expose a set agent_ids, an observation space dictionary
mapping the agent ids to their observation spaces, and an action space dictionary that does the same.

OpenSpiel Environment

The OpenSpielWrapper enables integration with OpenSpiel. OpenSpiel support turn-based and simultaneous simu-
lations, which Abmarl provides through its TurnBasedManager and AllStepManager. OpenSpiel algorithms interact
with the simulation through TimeStep objects, which include the observations, rewards, and step type. Among the
observations, it expects a list of legal actions available to each agent. The OpenSpielWrapper converts output from the
underlying simulation to the expected format. A TimeStep output typically looks like this:

TimeStpe(
observations={

info_state: {agent_id: agent_obs for agent_id in agents},
legal_actions: {agent_id: agent_legal_actions for agent_id in agents},
current_player: current_agent_id

}
rewards={

{agent_id: agent_reward for agent_id in agents}
}
discounts={

{agent_id: agent_discout for agent_id in agents}
}
step_type=StepType enum

)

Furthermore, OpenSpiel provides actions as a list. The OpenSpielWrapper converts those actions to a dict before
forwarding it to the underlying simulation manager.

OpenSpiel does not support the ability for some agents in a simulation to finish before others. The simulation is
either ongoing, in which all agents are providing actions, or else it is done for all agents. In contrast, Abmarl allows
some agents to be done before others as the simulation progresses. Abmarl expects that done agents will not provide
actions. OpenSpiel, however, will always provide actions for all agents. The OpenSpielWrapper removes the actions
from agents that are already done before forwarding the action to the underlying simulation manager. Furthermore,
OpenSpiel expects every agent to be present in the TimeStep outputs. Normally, Abmarl will not provide output for

2.1. Creating Agents and Simulations 13

Abmarl, Release 0.2.6

agents that are done since they have finished generating data in the episode. In order to work with OpenSpiel, the
OpenSpielWrapper forces output from all agents at every step, including those already done.

Warning: The OpenSpielWrapper only works with simulations in which the action and observation space of every
agent is Discrete. Most simulations will need to be wrapped with the RavelDiscreteWrapper.

2.2 Training with an Experiment Configuration

In order to run experiments, we must define a configuration file that specifies Simulation and Trainer parameters. Here
is the configuration file from the Corridor tutorial that demonstrates a simple corridor simulation with multiple agents.

Import the MultiCorridor ABS, a simulation manager, and the multiagent
wrapper needed to connect to RLlib's trainers
from abmarl.examples import MultiCorridor
from abmarl.managers import TurnBasedManager
from abmarl.external import MultiAgentWrapper

Create and wrap the simulation
NOTE: The agents in `MultiCorridor` are all homogeneous, so this simulation
just creates and stores the agents itself.
sim = MultiAgentWrapper(TurnBasedManager(MultiCorridor()))

Register the simulation with RLlib
sim_name = "MultiCorridor"
from ray.tune.registry import register_env
register_env(sim_name, lambda sim_config: sim)

Set up the policies. In this experiment, all agents are homogeneous,
so we just use a single shared policy.
ref_agent = sim.unwrapped.agents['agent0']
policies = {

'corridor': (None, ref_agent.observation_space, ref_agent.action_space, {})
}
def policy_mapping_fn(agent_id):

return 'corridor'

Experiment parameters
params = {

'experiment': {
'title': f'{sim_name}',
'sim_creator': lambda config=None: sim,

},
'ray_tune': {

'run_or_experiment': 'PG',
'checkpoint_freq': 50,
'checkpoint_at_end': True,
'stop': {

'episodes_total': 2000,
},
'verbose': 2,

(continues on next page)

14 Chapter 2. Design

Abmarl, Release 0.2.6

(continued from previous page)

'local_dir': 'output_dir',
'config': {

--- simulation ---
'disable_env_checking': False,
'env': sim_name,
'horizon': 200,
'env_config': {},
--- Multiagent ---
'multiagent': {

'policies': policies,
'policy_mapping_fn': policy_mapping_fn,

},
--- Parallelism ---
"num_workers": 7,
"num_envs_per_worker": 1,

},
}

}

Warning: The simulation must be a Simulation Manager or an External Wrapper as described above.

Note: This example has num_workers set to 7 for a computer with 8 CPU’s. You may need to adjust this for your
computer to be <cpu count> - 1.

2.2.1 Experiment Parameters

The strucutre of the parameters dictionary is very important. It must have an experiment key which contains both the
title of the experiment and the sim_creator function. This function should receive a config and, if appropriate, pass
it to the simulation constructor. In the example configuration above, we just return the already-configured simulation.
Without the title and simulation creator, Abmarl may not behave as expected.

The experiment parameters also contains information that will be passed directly to RLlib via the ray_tune parameter.
See RLlib’s documentation for a list of common configuration parameters.

2.2.2 Command Line

With the configuration file complete, we can utilize the command line interface to train our agents. We simply type
abmarl train multi_corridor_example.py, where multi_corridor_example.py is the name of our configuration
file. This will launch Abmarl, which will process the file and launch RLlib according to the specified parameters.
This particular example should take 1-10 minutes to train, depending on your compute capabilities. You can view the
performance in real time in tensorboard with tensorboard --logdir <local_dir>/abmarl_results.

Note: By default, the “base” of the output directory is the home directory, and Abmarl will create the abmarl_results
directory there. The base directory can by configured in the params under ray_tune using the local_dir parame-
ter. This value can be a full path, like 'local_dir': '/usr/local/scratch', or it can be a relative path, like

2.2. Training with an Experiment Configuration 15

https://docs.ray.io/en/releases-2.0.0/rllib/rllib-training.html#common-parameters

Abmarl, Release 0.2.6

'local_dir': output_dir, where the path is relative from the directory where Abmarl was launched, not from
the configuration file. If a path is given, the output will be under <local_dir>/abmarl_results.

2.3 Debugging

It may be useful to trial run a simulation after setting up a configuration file to ensure that the simulation mechanics work
as expected. Abmarl’s debug command will run the simulation with random actions and create an output directory,
wherein it will copy the configuration file and output the observations, actions, rewards, and done conditions for each
step. The data from each episode will be logged to its own file in the output directory, where the output directory is
configured as above. For example, the command

abmarl debug multi_corridor_example.py -n 2 -s 20 --render

will run the MultiCorridor simulation with random actions and output log files to the directory it creates for 2 episodes
and a horizon of 20, as well as render each step in each episode.

Check out the debugging example to see how to debug within a python script.

2.4 Visualizing

We can visualize the agents’ learned behavior with the visualize command, which takes as argument the output
directory from the training session stored in ~/abmarl_results. For example, the command

abmarl visualize ~/abmarl_results/MultiCorridor-2020-08-25_09-30/ -n 5 --record

will load the experiment (notice that the directory name is the experiment title from the configuration file appended with
a timestamp) and display an animation of 5 episodes. The --record flag will save the animations as .gif animations
in the training directory.

By default, each episode has a horizon of 200 steps (i.e. it will run for up to 200 steps). It may end earlier depending
on the done condition from the simulation. You can control the horizon with -s or --steps-per-episode when
running the visualize command.

Using the --record flag will not only save the animations, but it will also play them live. The --record-only flag
is useful when you only want to save the animations, such as if you’re running headless or processing results in batch.

2.5 Analyzing

The simulation and trainer can also be loaded into an analysis script for post-processing via the analyze command.
The analysis script must implement the following run function. Below is an example that can serve as a starting point.

Load the simulation and the trainer from the experiment as objects
def run(sim, trainer):

"""
Analyze the behavior of your trained policies using the simulation and trainer
from your RL experiment.

Args:
sim:

(continues on next page)

16 Chapter 2. Design

https://github.com/LLNL/Abmarl/blob/main/examples/debug_example.py

Abmarl, Release 0.2.6

(continued from previous page)

Simulation Manager object from the experiment.
trainer:

Trainer that computes actions using the trained policies.
"""
Run the simulation with actions chosen from the trained policies
policy_agent_mapping = trainer.config['multiagent']['policy_mapping_fn']
for episode in range(100):

print('Episode: {}'.format(episode))
obs = sim.reset()
done = {agent: False for agent in obs}
while True: # Run until the episode ends

Get actions from policies
joint_action = {}
for agent_id, agent_obs in obs.items():

if done[agent_id]: continue # Don't get actions for done agents
policy_id = policy_agent_mapping(agent_id)
action = trainer.compute_action(agent_obs, policy_id=policy_id)
joint_action[agent_id] = action

Step the simulation
obs, reward, done, info = sim.step(joint_action)
if done['__all__']:

break

Analysis can then be performed using the command line interface:

abmarl analyze ~/abmarl_results/MultiCorridor-2020-08-25_09-30/ my_analysis_script.py

2.6 Trainer Prototype

Abmarl provide an initial prototype of its own Trainer framework to support in-house algorithm development. Trainers
manage the interaction between policies and agents in a simulation. Abmarl currently supports a MultiPolicyTrainer,
which allows each agent to have its own policy, and a SinglePolicyTrainer, which allows for a single policy shared among
multiple agents. The trainer abstracts the data generation process behind its generate_episode function. The simulation
reports an initial observation, which the trainer feeds through its policies according to the policy_mapping_fn. These
policies return actions, which the trainer uses to step the simulation forward. Derived trainers overwrite the train
function to implement the RL algorithm. For example, a custom trainer would look something like this:

class MyCustomTrainer(SinglePolicyTrainer):
def train(self, iterations=10, gamma=0.9, **kwargs):

for _ in range(iterations):
states, actions, rewards, _ = self.generate_episode(**kwargs)
self.policy.update(states, actions, rewards)
Perform some kind of policy update ^

Abmarl currently supports a Monte Carlo Trainer and a Debug Trainer, which is used by abmarl debug command
line interface.

Note: Abmarl’s trainer framework is in its early design stages. Stay tuned for more developments.

2.6. Trainer Prototype 17

Abmarl, Release 0.2.6

18 Chapter 2. Design

CHAPTER

THREE

GRIDWORLD SIMULATION FRAMEWORK

Abmarl provides a GridWorld Simulation Framework for setting up grid-based Agent Based Simulations, which can
be connected to Reinforcement Learning algorithms through Abmarl’s AgentBasedSimulation interface. The Grid-
World Simulation Framework is a gray box: we assume users have working knowledge of Python and object-oriented
programming. Using the built in features requires minimal knowledge, but extending them and creating new features
requires more knowledge. In addition to the design documentation below, see the GridWorld tutorials for in-depth
examples on using and extending the GridWorld Simulation Framework.

3.1 Framework Design

The GridWorld Simulation Framework utilizes a modular design that allows users to create new features and plug them
in as components of the simulation. Every component inherits from the GridWorldBaseComponent class and has a
reference to a Grid and a dictionary of Agents. These components make up a GridWorldSimulation, which extends the
AgentBasedSimulation interface. For example, a simulation might look something like this:

from abmarl.sim.gridworld.base import GridWorldSimulation
from abmarl.sim.gridworld.state import PositionState
from abmarl.sim.gridworld.actor import MoveActor
from abmarl.sim.gridworld.observer import SingleGridObserver

class MyGridSim(GridWorldSimulation):
def __init__(self, **kwargs):

self.agents = kwargs['agents']
self.position_state = PositionState(**kwargs)
self.move_actor = MoveActor(**kwargs)
self.observer = SingleGridObserver(**kwargs)

def reset(self, **kwargs):
self.position_state.reset(**kwargs)

def step(self, action_dict):
for agent_id, action in action_dict.items():

self.move_actor.process_action(self.agents[agent_id], action)

def get_obs(self, agent_id, **kwargs):
return self.observer.get_obs(self.agents[agent_id])

...

19

Abmarl, Release 0.2.6

Fig. 1: Abmarl’s GridWorld Simulation Framework. A simulation has a Grid, a dictionary of agents, and various com-
ponents that manage the various features of the simulation. The componets shown in medium-blue are user-configurable
and -creatable.

20 Chapter 3. GridWorld Simulation Framework

Abmarl, Release 0.2.6

3.1.1 Agent

Every entity in the simulation is a GridWorldAgent (e.g. walls, foragers, resources, fighters, etc.). GridWorldAgents
are PrincipleAgents with specific parameters that work with their respective components. Agents must be given an
encoding, which is a positive integer that correlates to the type of agent and simplifies the logic for many components
of the framework. GridWorldAgents can also be configured with an initial position, the ability to block other agents’
abilities, and visualization parameters such as shape and color.

Following the dataclass model, additional agent classes can be defined that allow them to work with various components.
For example, GridObservingAgents can work with Observers, and MovingAgents can work with the MoveActor. Any
new agent class should inhert from GridWorldAgent and possibly from ActingAgent or ObservingAgent as needed. For
example, one can define a new type of agent like so:

from abmarl.sim.gridworld.agent import GridWorldAgent
from abmarl.sim import ActingAgent

class CommunicatingAgent(GridWorldAgent, ActingAgent):
def __init__(self, broadcast_range=None, **kwargs):

super().__init__(**kwargs)
self.broadcast_range = broadcast_range
...

Warning: Agents should follow the dataclass model, meaning that they should only be given parameters. All
functionality should be written in the simulation components.

3.1.2 Grid

The Grid stores Agents in a two-dimensional numpy array. The Grid is configured to be a certain size (rows and
columns) and to allow types of Agents to overlap (occupy the same cell). For example, you may want a ForagingAgent
to be able to overlap with a ResourceAgent but not a WallAgent. The overlapping parameter is a dictionary that maps
the Agent’s encoding to a set of other Agents’ encodings with which it can overlap. For example,

from abmarl.sim.gridworld.grid import Grid

overlapping = {
1: {2},
2: {1, 3},
3: {2, 3}

}
grid = Grid(5, 6, overlapping=overlapping)

means that agents whose encoding is 1 can overlap with other agents whose encoding is 2; agents whose encoding is 2
can overlap with other agents whose encoding is 1 or 3; and agents whose encoding is 3 can overlap with other agents
whose encoding is 2 or 3.

Note: If overlapping is not specified, then no agents will be able to occupy the same cell in the Grid.

Interaction between simulation components and the Grid is data open, which means that we allow components to
access the internals of the Grid. Although this is possible and sometimes necessary, the Grid also provides an interface
for safer interactions with components. Components can query the Grid to see if an agent can be placed at a specific
position. Components can place agents at a specific position in the Grid, which will succeed if that cell is available

3.1. Framework Design 21

Abmarl, Release 0.2.6

to the agent as per the overlapping configuration. And Components can remove agents from specific positions in the
Grid.

3.1.3 State

State Components manage the state of the simulation alongside the Grid. At the bare minimum, each State resets the
part of the simulation that it manages at the the start of each episode.

3.1.4 Actor

Actor Components are responsible for processing agent actions and producing changes to the state of the simulation.
Actors assign supported agents with an appropriate action space and process agents’ actions based on the Actor’s key.
The result of the action is a change in the simulation’s state, and Actors should return that change in a reasonable form.
For example, the MoveActor appends MovingAgents’ action spaces with a ‘move’ channel and looks for the ‘move’ key
in the agent’s incoming action. After a move is processed, the MoveActor returns if the move was successful.

3.1.5 Observer

Observer Components are responsible for creating an agent’s observation of the state of the simulation. Observers
assign supported agents with an appropriate observation space and generate observations based on the Observer’s key.
For example, the SingleGridObserver generates an observation of the nearby grid and stores it in the ‘grid’ channel of
the ObservingAgent’s observation.

3.1.6 Done

Done Components manage the “done state” of each agent and of the simulation as a whole. Agents that are reported as
done will cease sending actions to the simulation, and the episode will end when all the agents are done or when the
simulation is done.

3.1.7 Component Wrappers

The GridWorld Simulation Framework also supports Component Wrappers. Wrapping a component can be useful
when you don’t want to add a completely new component and only need to make a modification to the way a component
already works. A component wrapper is itself a component, and so it must implement the same interface as the wrapped
component to ensure that it works within the framework. A component wrapper also defines additional functions
for wrapping spaces and data to and from those spaces: check_space for ensuring the space can be transformed,
wrap_space to perform the transformation, wrap_point to map data to the transformed space, and unwrap_point
to map transformed data back to the original space.

As its name suggests, a Component Wrapper stands between the underlying component and other objects with which
it exchanges data. As such, a wrapper typically modifies the incoming/outgoing data before leveraging the underlying
component for the actual datda processing. The main difference among wrapper types is in the direction of data flow,
which we detail below.

22 Chapter 3. GridWorld Simulation Framework

Abmarl, Release 0.2.6

Actor Wrappers

Actor Wrappers receive actions in the wrapped_space through the process_action function. It can modify the data
before sending it to the underlying Actor to process. An Actor Wrapper may need to modify the action spaces of
corresponding agents to ensure that the action arrives in the correct format.

3.1.8 Building the Simulation

The GridWorldSimluation supports various methods of building a defined simulation. Each builder takes arguments
specific to the builder. Additional arguments can be provided, and will be forwarded to the simulation for use in its
components, for example.

Build Sim

Users can build a simulation by supplying the number of rows, columns, and a dictionary of agents. The grid is
initialized to the specified size and populated using information contained in the agents dictionary in conjunction with
the simulation’s state components. For example, the following simulation is built using information just from the
dictionary of agents:

import numpy as np
from abmarl.examples.sim import MultiAgentGridSim
from abmarl.sim.gridworld.agent import GridWorldAgent

agent = GridWorldAgent(id='agent0', encoding=1, initial_position=np.array([0, 0]))
sim = MultiAgentGridSim.build_sim(

3, 4,
agents={'agent0': agent}

)
sim.reset()

This simulation has a grid of size (3 x 4) with a single agent with encoding 1 placed at position (0, 0).

Build Sim From Grid

Users can build a simulation by copying from an existing grid. The builder will use the state of the grid as the initial
state for the new grid for the simulation. Particularly, agents will be assigned initial positions based on their positions
within the input grid. Extra agents can be included in the simulation via the extra_agents argument. For example,
the following simulation is built using a pre-defined grid and extra agents:

import numpy as np
from abmarl.examples.sim import MultiAgentGridSim
from abmarl.sim.gridworld.agent import GridWorldAgent
from abmarl.sim.gridworld.grid import Grid

grid = Grid(2, 2)
grid.reset()
agents = {

'agent0': GridWorldAgent(id='agent0', encoding=1, initial_position=np.array([0, 0])),
'agent1': GridWorldAgent(id='agent1', encoding=1, initial_position=np.array([0, 1])),
'agent2': GridWorldAgent(id='agent2', encoding=1, initial_position=np.array([1, 0])),

}
(continues on next page)

3.1. Framework Design 23

Abmarl, Release 0.2.6

(continued from previous page)

grid.place(agents['agent0'], (0, 0))
grid.place(agents['agent1'], (0, 1))
grid.place(agents['agent2'], (1, 0))

extra_agents = {
'agent0': GridWorldAgent(id='agent0', encoding=2, initial_position=np.array([0, 1])),
'agent3': GridWorldAgent(id='agent3', encoding=3, initial_position=np.array([0, 1])),
'agent4': GridWorldAgent(id='agent4', encoding=4, initial_position=np.array([1, 0])),
'agent5': GridWorldAgent(id='agent5', encoding=5),

}

sim = MultiAgentGridSim.build_sim_from_grid(
grid,
extra_agents=extra_agents,
overlapping={1: {3, 4}, 3: {1}, 4: {1}}

)
sim.reset()

This simulation has a grid of size (2 x 2). Agents 0-2 are positioned in the new grid according to their configuration
in the original grid. Agents 3-5 are provided as extra agents, not from the original grid. Agent0 appears as both an
extra agent and an agent in the original grid. If this happens, the builder prioritizes using the agent as it exist in the
original grid.

Note: In the example above, the builder itself does not use the overlapping argument. That is passed on to the
simulation.

Note: For consistency, the agents from the input grid should have their position in the grid as their
initial_position.

Caution: The agents from the input grid are shallow-copied.

Build Sim From Array

Users can build a simulation by populating a grid based on an array. The array must be 2-dimensional and contain
alphanumeric characters corresponding to entries in an object registry. The object registry is a dictionary that maps
those entries to agent-building functions, assigning each agent a unique id. Agents will be placed within the grid
according to its position in the array. As above, extra agents can be included. The following simulation is built using
an array, object registry, and extra agents:

import numpy as np
from abmarl.examples.sim import MultiAgentGridSim
from abmarl.sim.gridworld.agent import GridWorldAgent

array = np.array([
['A', '.', 'B', '0', ''],
['B', '_', '', 'C', 'A']

])
(continues on next page)

24 Chapter 3. GridWorld Simulation Framework

Abmarl, Release 0.2.6

(continued from previous page)

obj_registry = {
'A': lambda n: GridWorldAgent(

id=f'A-class-barrier{n}',
encoding=1,

),
'B': lambda n: GridWorldAgent(

id=f'B-class-barrier{n}',
encoding=2,

),
'C': lambda n: GridWorldAgent(

id=f'C-class-barrier{n}',
encoding=3,

),
}
extra_agents = {

'B-class-barrier2': GridWorldAgent(
id='B-class-barrier2',
encoding=4,
initial_position=np.array([1, 0])

),
'extra_agent0': GridWorldAgent(

id='extra_agent0',
encoding=5,
initial_position=np.array([0, 0])

),
'extra_agent1': GridWorldAgent(

id='extra_agent1',
encoding=5,
initial_position=np.array([0, 0])

),
'extra_agent2': GridWorldAgent(

id='extra_agent2',
encoding=6,
initial_position=np.array([0, 4])

)
}
sim = MultiAgentGridSim.build_sim_from_array(

array,
obj_registry,
extra_agents=extra_agents,
overlapping={1: {5}, 5: {1, 5}}

)
sim.reset()

This simulation has a grid of size (2 x 5), matching the input array. There are 3 types of agents in the object registry
corresponding with the characters in the input array. B-class-barrier2 appears in the extra agents, but it is also
built from the input array. If this happens, the builder prioritizes using the agent as is built from the array.

Note: Dots, underscores, and zeros are reserved as empty space and cannot be used in the object registry.

3.1. Framework Design 25

Abmarl, Release 0.2.6

Build Sim From File

Building from a file works in the same way as building from an array. Here, the input is a file with alphanumeric
characteres ordered in a grid-like fashion. An object registry is used to interpret those characters into agents, and they
are placed in the grid. As above, extra agents can be included. The following shows an example of building a simulation
from file:

A . B 0 _
B _ _ C A

This input file has two lines with 5 entries each, which will result in a 2 x 5 grid. Each entry is seperated by a space.
Dots, underscores, and zeros are reserved for empty spaces.

import numpy as np
from abmarl.examples.sim import MultiAgentGridSim
from abmarl.sim.gridworld.agent import GridWorldAgent

file_name = 'grid_file.txt'
obj_registry = {

'A': lambda n: GridWorldAgent(
id=f'A-class-barrier{n}',
encoding=1,

),
'B': lambda n: GridWorldAgent(

id=f'B-class-barrier{n}',
encoding=2,

),
'C': lambda n: GridWorldAgent(

id=f'C-class-barrier{n}',
encoding=3,

),
}
extra_agents = {

'B-class-barrier2': GridWorldAgent(
id='B-class-barrier2',
encoding=4,
initial_position=np.array([1, 0])

),
'extra_agent0': GridWorldAgent(

id='extra_agent0',
encoding=5,
initial_position=np.array([0, 0])

),
'extra_agent1': GridWorldAgent(

id='extra_agent1',
encoding=5,
initial_position=np.array([0, 0])

),
'extra_agent2': GridWorldAgent(

id='extra_agent2',
encoding=6,
initial_position=np.array([0, 4])

)
}

(continues on next page)

26 Chapter 3. GridWorld Simulation Framework

Abmarl, Release 0.2.6

(continued from previous page)

sim = MultiAgentGridSim.build_sim_from_file(
file_name,
obj_registry,
extra_agents=extra_agents,
overlapping={1: {5}, 5: {1, 5}}

)
sim.reset()

This simulation is the same as the one above that was built from the array.

3.2 Built-in Features

Below is a list of some features that are available to use out of the box. Rememeber, you can create your own features
in the GridWorld Simulation Framework and use many combinations of components together to make up a simulation.

3.2.1 Position

Agents have positions in the Grid that are managed by the PositionState. Agents can be configured with an initial
position, which is where they will start at the beginning of each episode. If they are not given an initial position, then
they will start at a random cell in the grid. Agents can overlap according to the Grid’s overlapping configuration. For
example, consider the following setup:

import numpy as np
from abmarl.sim.gridworld.agent import GridWorldAgent
from abmarl.sim.gridworld.grid import Grid
from abmarl.sim.gridworld.state import PositionState

agent0 = GridWorldAgent(
id='agent0',
encoding=1,
initial_position=np.array([2, 4])

)
agent1 = GridWorldAgent(

id='agent1',
encoding=1

)
position_state = PositionState(

agents={'agent0': agent0, 'agent1': agent1},
grid=Grid(4, 5)

)
position_state.reset()

agent0 is configured with an initial position and agent1 is not. At the start of each episode, agent0 will be placed at (2,
4) and agent1 will be placed anywhere in the grid (except for (2,4) because they cannot overlap).

3.2. Built-in Features 27

Abmarl, Release 0.2.6

Fig. 2: agent0 in green starts at the same cell in every episode, and agent1 in blue starts at a random cell each time.

Maze Placement State

The MazePlacementState is a specialized state component used for positioning agents within mazes. The cells are
partitioned into free and barrier cells. Barrier-encoded agents can be placed on barrier cells and free-encoded agents
can be placed on free cells. There must be a target agent, which is used for clustering barriers and scattering free agents.

Note: Because the maze is randomly generated at the beginning of each episode and because the agents must be placed
in either a free cell or barrier cell according to their encodings, it is highly recommended that none of your agents be
given initial positions, except for the target agent.

The MazePlacementState is very useful for randomly placing agents at the beginning of each episode while maintaining
a desired structure. In this case, we can use this state component to keep barriers clustered around a target and scatter
free agents away from it, regardless of where that target is positioned at the beginning of each episode. The clustering
is such that all paths to the target are not blocked.

3.2.2 Movement

MovingAgents can move around the Grid in conjunction with the MoveActor. MovingAgents require a move range
parameter, indicating how many spaces away they can move in a single step. Agents cannot move out of bounds and
can only move to the same cell as another agent if they are allowed to overlap. For example, in this setup

import numpy as np
from abmarl.sim.gridworld.agent import MovingAgent
from abmarl.sim.gridworld.grid import Grid
from abmarl.sim.gridworld.state import PositionState
from abmarl.sim.gridworld.actor import MoveActor

agents = {
'agent0': MovingAgent(

id='agent0', encoding=1, move_range=1, initial_position=np.array([2, 2])
),
'agent1': MovingAgent(

id='agent1', encoding=1, move_range=2, initial_position=np.array([0, 2])
(continues on next page)

28 Chapter 3. GridWorld Simulation Framework

Abmarl, Release 0.2.6

Fig. 3: Animation showing a target (green) starting at random positions at the beginning of each episode. Barriers
(gray squares) are clustered near the target without blocking all paths to it. Free agents (blue) are scattered far from the
target.

(continued from previous page)

)
}
grid = Grid(5, 5, overlapping={1: {1}})
position_state = PositionState(agents=agents, grid=grid)
move_actor = MoveActor(agents=agents, grid=grid)

position_state.reset()
move_actor.process_action(agents['agent0'], {'move': np.array([0, 1])})
move_actor.process_action(agents['agent1'], {'move': np.array([2, 1])})

agent0 starts at position (2, 2) and can move up to one cell away. agent1 starts at (0, 2) and can move up to two cells
away. The two agents can overlap each other, so when the move actor processes their actions, both agents will be at
position (2, 3).

The MoveActor automatically assigns a null action of [0, 0], indicating no move.

3.2. Built-in Features 29

Abmarl, Release 0.2.6

Fig. 4: agent0 and agent1 move to the same cell.

3.2.3 Cross Move Actor

The CrossMoveActor is very similar to the MoveActor. Rather than moving to any nearby squares based on some
move_range, MovingAgents can move either up, down, left, right, or stay in place. The move_range parameter is
ignored. The CrossMoveActor automatically assigns a null_action of 0, indicating the agent stays in place.

3.2.4 Absolute Position Observer

The AbsolutePositionObserver enables ObservingAgents to observe their own absolute position in the grid. The posi-
tion is reported as a two-dimensional numpy array, whose lower bounds are (0, 0) and upper bounds are the size of
the grid minus one. This observer does not provide information on any other agent in the grid.

3.2.5 Absolute Grid Observer

AbsoluteGridObserver means that the GridObservingAgent observes the grid as though it were looking at it from the
top down, “from the grid’s perspective”, so to speak. As agents move around, the grid stays fixed and the observation
shows each agent according to their actual positions. Agents are represented by their encodings, and in order for the
observing agent to distinguish itself from other entities of the same encoding, it sees itself as a -1.

An agent’s observation may be restricted by its own view_range and by other agents’ blocking. This imposes a “fog
of war” type masking on the observations. Cells that are not observable will be represented as a -2. For example, the
following setup

import numpy as np
from abmarl.sim.gridworld.agent import GridObservingAgent, GridWorldAgent
from abmarl.sim.gridworld.grid import Grid
from abmarl.sim.gridworld.state import PositionState
from abmarl.sim.gridworld.observer import AbsoluteGridObserver

agents = {
'agent0': GridObservingAgent(id='agent0', encoding=1, initial_position=np.array([2,␣

→˓2]), view_range=2),
'agent1': GridWorldAgent(id='agent1', encoding=2, initial_position=np.array([0, 1])),
'agent2': GridWorldAgent(id='agent2', encoding=3, initial_position=np.array([1, 0])),

(continues on next page)

30 Chapter 3. GridWorld Simulation Framework

Abmarl, Release 0.2.6

(continued from previous page)

'agent3': GridWorldAgent(id='agent3', encoding=4, initial_position=np.array([4, 4])),
'agent4': GridWorldAgent(id='agent4', encoding=5, initial_position=np.array([4, 4])),
'agent5': GridWorldAgent(id='agent5', encoding=6, initial_position=np.array([5, 5]))

}
grid = Grid(6, 6, overlapping={4: {5}, 5: {4}})
position_state = PositionState(agents=agents, grid=grid)
observer = AbsoluteGridObserver(agents=agents, grid=grid)

position_state.reset()
observer.get_obs(agents['agent0'])

will position agents as below and output an observation for agent0 (blue) like so:

[0, 2, 0, 0, 0, -2],
[3, 0, 0, 0, 0, -2],
[0, 0, -1, 0, 0, -2],
[0, 0, 0, 0, 0, -2],
[0, 0, 0, 0, 3*, -2],
[-2, -2, -2, -2, -2, -2],

This is a 6 x 6 grid, so the observation is the same size. The observing agent is located at (2, 2) in the grid, just
as its position indicates. Other agents appear in the grid represented as their encodings and appear according to their
actual positions. Because the observing agent only has a view_range of 2, it cannot see the last row or column, so the
observation masks those cells with the value of -2. There are two agents at position (4, 4), one with encoding 3 and
another with encoding 4. The AbsoluteGridObserver randomly chooses one from among those encodings.

The AbsoluteGridObserver automatically assigns a null observation as a matrix of all -2s, indicating that everything is
masked.

3.2. Built-in Features 31

Abmarl, Release 0.2.6

3.2.6 Single Grid Observer

GridObservingAgents can observe the state of the Grid around them, namely which other agents are nearby, via the
SingleGridObserver. The SingleGridObserver generates a two-dimensional matrix sized by the agent’s view range with
the observing agent located at the center of the matrix. While the AbsoluteGridObserver observes agents according to
their actual positions, the SingleGridObserver observes agents according to their relative positions. All other agents
within the view range will appear in the observation, shown as their encoding. For example, using the above setup with
a view_range of 3 will output an observation for agent0 (blue) like so:

[-1, -1, -1, -1, -1, -1, -1],
[-1, 0, 2, 0, 0, 0, 0],
[-1, 3, 0, 0, 0, 0, 0],
[-1, 0, 0, 1, 0, 0, 0],
[-1, 0, 0, 0, 0, 0, 0],
[-1, 0, 0, 0, 0, 4*, 0],
[-1, 0, 0, 0, 0, 0, 6]

Since view range is the number of cells away that can be observed, the observation size is (2 * view_range + 1)
x (2 * view_range + 1). agent0 is centered in the middle of this array, shown by its encoding: 1. All other agents
appear in the observation relative to agent0’s position and shown by their encodings. The agent observes some out of
bounds cells, which appear as -1s. agent3 and agent4 occupy the same cell, and the SingleGridObserver will randomly
select between their encodings for the observation.

By setting observe_self to False, the SingleGridObserver can be configured so that an agent doesn’t observe itself and
only observes other agents, which may be helpful if overlapping is an important part of the simulation.

The SingleGridObserver automatically assigns a null observation as a matrix of all -2s, indicating that everything is
masked.

32 Chapter 3. GridWorld Simulation Framework

Abmarl, Release 0.2.6

3.2.7 Multi Grid Observer

Similar to the SingleGridObserver, the MultiGridObserver observes the grid from the observing agent’s perspective.
It displays a separate matrix for every encoding. Each matrix shows the relative positions of the agents and the number
of those agents that occupy each cell. Out of bounds indicators (-1) and masked cells (-2) are present in every matrix.
For example, the above setup would show an observation like so:

Encoding 1
[-1, -1, -1, -1, -1, -1, -1],
[-1, 0, 0, 0, 0, 0, 0],
[-1, 0, 0, 0, 0, 0, 0],
[-1, 0, 0, 1, 0, 0, 0],
[-1, 0, 0, 0, 0, 0, 0],
[-1, 0, 0, 0, 0, 0, 0],
[-1, 0, 0, 0, 0, 0, 0]

Encoding 2
[-1, -1, -1, -1, -1, -1, -1],
[-1, 0, 1, 0, 0, 0, 0],
[-1, 0, 0, 0, 0, 0, 0],
[-1, 0, 0, 0, 0, 0, 0],
[-1, 0, 0, 0, 0, 0, 0],
[-1, 0, 0, 0, 0, 0, 0],
[-1, 0, 0, 0, 0, 0, 0]
...

MultiGridObserver may be preferable to SingleGridObserver in simulations where there are many overlapping agents.

The MultiGridObserver automatically assigns a null observation of a tensor of all -2s, indicating that everything is
masked.

3.2. Built-in Features 33

Abmarl, Release 0.2.6

Blocking

Agents can block other agents’ abilities and characteristics, such as blocking them from view, which masks out parts
of the observation. For example, if agent4 above is configured with blocking=True, then the SingleGridObserver
would produce an observation like this:

[-1, -1, -1, -1, -1, -1, -1],
[-1, 0, 2, 0, 0, 0, 0],
[-1, 3, 0, 0, 0, 0, 0],
[-1, 0, 0, 1, 0, 0, 0],
[-1, 0, 0, 0, 0, 0, 0],
[-1, 0, 0, 0, 0, 4*, 0],
[-1, 0, 0, 0, 0, 0, -2]

The -2 indicates that the cell is masked, and the choice of displaying agent3 over agent4 is still a random choice. Which
cells get masked by blocking agents is determined by drawing two lines from the center of the observing agent’s cell to
the corners of the blocking agent’s cell. Any cell whose center falls between those two lines will be masked, as shown
below.

Fig. 5: The black agent is a wall agent that masks part of the grid from the blue agent. Cells whose centers fall betweent
the lines are masked. Centers that fall directly on the line or outside of the lines are not masked. Two setups are shown
to demonstrate how the masking may change based on the agents’ positions.

Blocking works with any of the built-in grid observers.

3.2.8 Health

HealthAgents track their health throughout the simulation. Health is always bounded between 0 and 1. Agents whose
health falls to 0 are marked as inactive. They can be given an initial health, which they start with at the beginning of the
episode. Otherwise, their health will be a random number between 0 and 1, as managed by the HealthState. Consider
the following setup:

from abmarl.sim.gridworld.agent import HealthAgent
from abmarl.sim.gridworld.grid import Grid
from abmarl.sim.gridworld.state import HealthState

agent0 = HealthAgent(id='agent0', encoding=1)
(continues on next page)

34 Chapter 3. GridWorld Simulation Framework

Abmarl, Release 0.2.6

(continued from previous page)

grid = Grid(3, 3)
agents = {'agent0': agent0}
health_state = HealthState(agents=agents, grid=grid)
health_state.reset()

agent0 will be assigned a random health value between 0 and 1.

3.2.9 Attacking

Health becomes more interesting when we let agents attack one another. AttackingAgents work in conjunction with an
AttackActor. They have an attack range, which dictates the range of their attack; an attack accuracy, which dictates
the chances of the attack being successful; an attack strength, which dictates how much health is depleted from the
attacked agent, and an attack count, which dictates the number of attacks an agent can make per turn.

An AttackActor interprets these properties and processes the attacks according to its own internal design. In general,
each AttackActor determines some set of attackable agents according to the following criteria:

1. The attack mapping, which is a dictionary that determines which encodings can attack other encodings (similar
to the overlapping parameter for the Grid), must allow the attack.

2. The relative positions of the two agents must fall within the attacking agent’s attack range.

3. The attackable agent must not be masked (e.g. hiding behind a wall). The masking is determined the same way
as blocking described above.

Then, the AttackActor selects agents from that set based on the attacking agent’s attack count. When an agent is
successfully attacked, its health is depleted by the attacking agent’s attack strength, which may result in the attacked
agent’s death. AttackActors can be configured to allow multiple attacks against a single agent per attacking agent and
per turn via the stacked attacks property. The following four AttackActors are built into Abmarl:

Binary Attack Actor

With the BinaryAttackActor, AttackingAgents can choose to launch attacks up to its attack count or not to attack at
all. For each attack, the BinaryAttackActor randomly searches the vicinity of the attacking agent for an attackble agent
according to the basic criteria listed above. Consider the following setup:

import numpy as np
from abmarl.sim.gridworld.agent import AttackingAgent, HealthAgent
from abmarl.sim.gridworld.grid import Grid
from abmarl.sim.gridworld.state import PositionState, HealthState
from abmarl.sim.gridworld.actor import BinaryAttackActor

agents = {
'agent0': AttackingAgent(

id='agent0',
encoding=1,
initial_position=np.array([0, 0]),
attack_range=1,
attack_strength=0.4,
attack_accuracy=1,
attack_count=2

),
'agent1': HealthAgent(id='agent1', encoding=2, initial_position=np.array([1, 0]),␣

(continues on next page)

3.2. Built-in Features 35

Abmarl, Release 0.2.6

(continued from previous page)

→˓initial_health=1),
'agent2': HealthAgent(id='agent2', encoding=2, initial_position=np.array([1, 1]),␣

→˓initial_health=0.3),
'agent3': HealthAgent(id='agent3', encoding=3, initial_position=np.array([0, 1]))

}
grid = Grid(2, 2)
position_state = PositionState(agents=agents, grid=grid)
health_state = HealthState(agents=agents, grid=grid)
attack_actor = BinaryAttackActor(agents=agents, grid=grid, attack_mapping={1: [2]},␣
→˓stacked_attacks=False)

position_state.reset()
health_state.reset()
attack_actor.process_action(agents['agent0'], {'attack': 2})
assert not agents['agent2'].active
assert agents['agent1'].active
assert agents['agent3'].active
attack_actor.process_action(agents['agent0'], {'attack': 2})
assert agents['agent1'].active
assert agents['agent3'].active

Fig. 6: agent0 in red launches four attacks over two turns. agent1 and agent2, blue and green respectively, are attackable.
agent2 dies because its health falls to zero, but agent1 continues living even after two attacks.

As per the attack mapping, agent0 can attack agent1 or agent2 but not agent3. It can make two attacks per turn, but
because the stacked attacks property is False, it cannot attack the same agent twice in the same turn. Looking at the
attack strength and initial health of the agents, we can see that agent0 should be able to kill agent2 with one attack but
it will require three attacks to kill agent1. In each turn, agent0 uses both of its attacks. In the first turn, both agent1 and
agent2 are attacked and agent2 dies. In the second turn, agent0 attempts two attacks again, but because there is only
one attackable agent in its vicinity and because stacked attacks are not allowed, only one of its attacks is successful:
agent1 is attacked, but it continues to live since it still has health. agent3 was never attacked because although it is
within agent0’s attack range, it is not in the attack mapping.

The BinaryAttackActor automatically assigns a null action of 0, indicating no attack.

36 Chapter 3. GridWorld Simulation Framework

Abmarl, Release 0.2.6

Encoding Based Attack Actor

The EncodingBasedAttackActor allows AttackingAgents to choose some number of attacks per each encoding. For
each attack, the EncodingBasedAttackActor randomly searches the vicinity of the attacking agent for an attackble
agent according to the basic criteria listed above. Contrast this actor with the BinaryAttackActor above, which does
not allow agents to specify attack by encoding. Consider the following setup:

import numpy as np
from abmarl.sim.gridworld.agent import AttackingAgent, HealthAgent
from abmarl.sim.gridworld.grid import Grid
from abmarl.sim.gridworld.state import PositionState, HealthState
from abmarl.sim.gridworld.actor import EncodingBasedAttackActor

agents = {
'agent0': AttackingAgent(

id='agent0',
encoding=1,
initial_position=np.array([0, 0]),
attack_range=1,
attack_strength=0.4,
attack_accuracy=1,
attack_count=2

),
'agent1': HealthAgent(id='agent1', encoding=2, initial_position=np.array([1, 0]),␣

→˓initial_health=1),
'agent2': HealthAgent(id='agent2', encoding=2, initial_position=np.array([1, 1]),␣

→˓initial_health=1),
'agent3': HealthAgent(id='agent3', encoding=3, initial_position=np.array([0, 1]),␣

→˓initial_health=0.5)
}
grid = Grid(2, 2)
position_state = PositionState(agents=agents, grid=grid)
health_state = HealthState(agents=agents, grid=grid)
attack_actor = EncodingBasedAttackActor(agents=agents, grid=grid, attack_mapping={1: [2,␣
→˓3]}, stacked_attacks=True)

position_state.reset()
health_state.reset()
attack_actor.process_action(agents['agent0'], {'attack': {2: 0, 3: 2}})
assert agents['agent1'].health == agents['agent1'].initial_health
assert agents['agent2'].health == agents['agent2'].initial_health
assert not agents['agent3'].active

As per the attack mapping, agent0 can attack all the other agents. It can make up to two attacks per turn per encoding
(e.g. two attacks on encoding 2 and two attacks on encoding 3 per turn), and because the stacked attacks property is
True, it can attack the same agent twice in the same turn. Looking at the attack strength and initial health of the agents,
we can see that agent0 should be able to kill agent3 with only two attacks. agent0 launches no attacks on encoding 2
and two attacks on encoding 3. Because agent3 is the only agent of encoding 3 and because stacked attacks are allowed,
it gets attacked twice in one turn, resulting in its death. Even though agent1 and agent2 are in agent0’s attack mapping
and attack range, neither of them is attacked because agent0 specified zero attacks on encoding 2.

The EncodingBasedAttackActor automatically assigns a null action of 0 for each encoding, indicating no attack.

3.2. Built-in Features 37

Abmarl, Release 0.2.6

Fig. 7: agent0 in red launches two attacks against encoding 3. Because stacked attacks are allowed, both attacks fall on
agent3 in the same turn, resulting in its death.

Selective Attack Actor

The SelectiveAttackActor allows AttackingAgents to specify some number of attacks on each of the cells in some local
grid defined by the agent’s attack range. In contrast to the BinaryAttackActor and EncodingBasedAttackActor above,
the SelectiveAttackActor does not randomly search for agents in the vicinity because it receives the attacked cells
directly. The attacking agent can attack each cell up to its attack count. Attackable agents are defined according to
the basic criteria listed above. If there are multiple attackable agents on the same cell, the actor randomly picks from
among them based on the number of attacks on that cell and whether or not stacked attacks are allowed. Consider the
following setup:

import numpy as np
from abmarl.sim.gridworld.agent import AttackingAgent, HealthAgent
from abmarl.sim.gridworld.grid import Grid
from abmarl.sim.gridworld.state import PositionState, HealthState
from abmarl.sim.gridworld.actor import SelectiveAttackActor

agents = {
'agent0': AttackingAgent(

id='agent0',
encoding=1,
initial_position=np.array([0, 0]),
attack_range=1,
attack_strength=1,
attack_accuracy=1,
attack_count=2

),
'agent1': HealthAgent(id='agent1', encoding=2, initial_position=np.array([1, 0]),␣

→˓initial_health=1),
'agent2': HealthAgent(id='agent2', encoding=2, initial_position=np.array([0, 1]),␣

→˓initial_health=1),
'agent3': HealthAgent(id='agent3', encoding=3, initial_position=np.array([0, 1]))

}
grid = Grid(2, 2, overlapping={2: {3}, 3: {2}})
position_state = PositionState(agents=agents, grid=grid)

(continues on next page)

38 Chapter 3. GridWorld Simulation Framework

Abmarl, Release 0.2.6

(continued from previous page)

health_state = HealthState(agents=agents, grid=grid)
attack_actor = SelectiveAttackActor(agents=agents, grid=grid, attack_mapping={1: [2]},␣
→˓stacked_attacks=False)

position_state.reset()
health_state.reset()
attack = np.array([

[0, 1, 0],
[0, 1, 2],
[0, 1, 0]

])
attack_actor.process_action(agents['agent0'], {'attack': attack})
assert not agents['agent1'].active
assert not agents['agent2'].active
assert agents['agent3'].active

Fig. 8: agent0 in red launches five attacks in the highlighted cells, resulting in agent1 and agent2 dying.

As per the attack mapping, agent0 can attack agent1 or agent2 but not agent3. It can make two attacks per turn per cell,
but because the stacked attacks property is False, it cannot attack the same agent twice in the same turn. Looking at
the attack strength and initial health of the agents, we can see that agent0 should be able to kill agent1 and agent2 with
a single attack each. agent0 launches 5 attacks: one on the cell above, one on its own cell, one on the cell below, and
two on the cell to the right. The attack above is on a cell that is out of bounds, so this attack does nothing. The attack
on its own cell fails because there are no attackable agents there. agent1 is on the cell below, and that attack succeeds.
agent2 and agent3 are both on the cell to the right, but only agent2 is attackable per the attack mapping and stacked
attacks are not allowed, so only one of the launched attacks is successful.

The SelectiveAttackActor automatically assigns a grid of 0s as the null action, indicating no attack on any cell.

3.2. Built-in Features 39

Abmarl, Release 0.2.6

Restricted Selective Attack Actor

The RestrictedSelectiveAttackActor allows AttackingAgents to specify some number of attacks in some local grid de-
fined by the attacking agent’s attack range. This actor is more restricted than its counterpart, the SelectiveAttackActor,
because rather than issuing attacks up to its attack count per cell, the attacking agent can only issue that many attacks
in the whole local grid. Attackable agents are defined according to the basic criteria listed above. If there are multiple
attackable agents on a the same cell, the actor randomly picks from among them based on the number of attacks on that
cell and whether or not stacked attacks are allowed. Consider the following setup:

import numpy as np
from abmarl.sim.gridworld.agent import AttackingAgent, HealthAgent
from abmarl.sim.gridworld.grid import Grid
from abmarl.sim.gridworld.state import PositionState, HealthState
from abmarl.sim.gridworld.actor import RestrictedSelectiveAttackActor

agents = {
'agent0': AttackingAgent(

id='agent0',
encoding=1,
initial_position=np.array([0, 0]),
attack_range=1,
attack_strength=0.6,
attack_accuracy=1,
attack_count=3

),
'agent1': HealthAgent(id='agent1', encoding=2, initial_position=np.array([1, 0]),␣

→˓initial_health=0.1),
'agent2': HealthAgent(id='agent2', encoding=2, initial_position=np.array([0, 1]),␣

→˓initial_health=0.1),
'agent3': HealthAgent(id='agent3', encoding=2, initial_position=np.array([1, 1]),␣

→˓initial_health=1)
}
grid = Grid(2, 2)
position_state = PositionState(agents=agents, grid=grid)
health_state = HealthState(agents=agents, grid=grid)
attack_actor = RestrictedSelectiveAttackActor(agents=agents, grid=grid, attack_mapping=
→˓{1: [2]}, stacked_attacks=False)

position_state.reset()
health_state.reset()
out = attack_actor.process_action(agents['agent0'], {'attack': [9, 9, 0]})
assert agents['agent3'].active
assert agents['agent3'].health == 0.4
out = attack_actor.process_action(agents['agent0'], {'attack': [9, 6, 8]})
assert not agents['agent1'].active
assert not agents['agent2'].active
assert not agents['agent3'].active

As per the attack mapping, agent0 can attack all the other agents, and it can issue up to three attacks per turn. stacked
attacks is False, so the same agent cannot be attacked twice in the same turn. Looking at the attack strength and initial
health of the agents, we can see that agent0 should be able to kill agent1 and agent2 with a single attack each but will
need two attacks to kill agent3. In the first turn, agent0 launches two attacks to the bottom right cell and chooses not
to use its third attack. agent3 is the only attackable agent on this cell, but because stacked attacks are not allowed, it
only gets attacked once. In the next turn, agent0 issues an attack on each of the three occupied cells, and each attack is

40 Chapter 3. GridWorld Simulation Framework

Abmarl, Release 0.2.6

Fig. 9: agent0 in red launches two attacks against the bottom right cell, catching agent3 with one of them. Then it
finishes off all the agents in the next turn.

succesful.

The RestrictedSelectiveAttackActor automatically assigns an array of 0s as the null action, indicating no attack on any
cell.

Note: The form of the attack in the RestrictedSelectiveAttackActor is the most difficult for humans to interpret. The
number of entries in the array reflects the agent’s attack count. The attack appears as the cell’s id, which is determined
from ravelling the local grid, where 0 means no attack, 1 is the top left cell, 2 is to the right of that, and so on through
the whole local grid.

3.2.10 Active Done

The ActiveDone component reports that agents are done based on their active property. If the agent is inactive, then it
is done. If all the agents are inactive, then the entire simulation is done.

3.2.11 One Team Remaining Done

The OneTeamRemainingDone component reports that the simulation is done when there is only one “team” remaining;
that is, when all the remaining active agents have the same encoding. This component does not report done for individual
agents.

3.2. Built-in Features 41

Abmarl, Release 0.2.6

3.2.12 Target Agent Done

The TargetAgentDone component takes a target_mapping, which maps agents to their targets by id. If an agent
overlaps its target, then that agent is done. If all of the agents have overlapped their targets, then the simulation is done.

3.2.13 RavelActionWrapper

The RavelActionWrapper transforms Discrete, MultiBinary, MultiDiscrete, bounded integer Box, and any nesting of
those spaces into a Discrete space by “ravelling” their values according to numpy’s ravel_multi_index function.
Thus, actions that are represented by arrays are converted into unique Discrete numbers. For example, we can apply
the RavelActionWrapper to the MoveActor, like so:

from abmarl.sim.gridworld.agent import MovingAgent
from abmarl.sim.gridworld.grid import Grid
from abmarl.sim.gridworld.state import PositionState
from abmarl.sim.gridworld.actor import MoveActor
from abmarl.sim.gridworld.wrapper import RavelActionWrapper

agents = {
'agent0': MovingAgent(id='agent0', encoding=1, move_range=1),
'agent1': MovingAgent(id='agent1', encoding=1, move_range=2)

}
grid = Grid(5, 5)
position_state = PositionState(agents=agents, grid=grid)
move_actor = MoveActor(agents=agents, grid=grid)
for agent in agents.values():

agent.finalize()
position_state.reset()

Move actor without wrapper
actions = {

agent.id: agent.action_space.sample() for agent in agents.values()
}
print(actions)
>>> {'agent0': OrderedDict([('move', array([1, 1]))]), 'agent1': OrderedDict([('move',␣
→˓array([2, -1]))])}

Wrapped move actor
(continues on next page)

42 Chapter 3. GridWorld Simulation Framework

Abmarl, Release 0.2.6

(continued from previous page)

move_actor = RavelActionWrapper(move_actor)
actions = {

agent.id: agent.action_space.sample() for agent in agents.values()
}
print(actions)
>>> {'agent0': OrderedDict([('move', 1)]), 'agent1': OrderedDict([('move', 22)])}

The actions from the unwrapped actor are in the original Box space, whereas after we apply the wrapper, the actions
from the wrapped actor are in the transformed Discrete space. The actor will receive move actions in the Discrete space
and convert them to the Box space before passing them to the MoveActor.

3.2.14 Exclusive Channel Action Wrapper

The ExclusiveChannelActionWrapper works with Dict action spaces, where each subspace is to be ravelled indepen-
dently and then combined so that that action channels are exclusive. The wrapping occurs in two steps. First, we use
numpy’s ravel capabilities to convert each subspace to a Discrete space. Second, we combine the Discrete spaces to-
gether in such a way that imposes exclusivity among the subspaces. The exclusion happens only on the top level, so a
Dict nested within a Dict will be ravelled without exclusion.

We can apply the ExclusiveChannelActionWrapper with the EncodingBasedAttackActor to force the agent to only attack
one encoding per turn, like so:

import numpy as np
from abmarl.sim.gridworld.agent import AttackingAgent, HealthAgent
from abmarl.sim.gridworld.grid import Grid
from abmarl.sim.gridworld.state import PositionState, HealthState
from abmarl.sim.gridworld.actor import EncodingBasedAttackActor
from abmarl.sim.gridworld.wrapper import ExclusiveChannelActionWrapper
from gym.spaces import Dict, Discrete

agents = {
'agent0': AttackingAgent(

id='agent0',
encoding=1,
initial_position=np.array([0, 0]),
attack_range=1,
attack_strength=0.4,
attack_accuracy=1,
attack_count=2

),
'agent1': HealthAgent(id='agent1', encoding=2, initial_position=np.array([1, 0]),␣

→˓initial_health=1),
'agent2': HealthAgent(id='agent2', encoding=2, initial_position=np.array([1, 1]),␣

→˓initial_health=1),
'agent3': HealthAgent(id='agent3', encoding=3, initial_position=np.array([0, 1]),␣

→˓initial_health=0.5)
}
grid = Grid(2, 2)
position_state = PositionState(agents=agents, grid=grid)
health_state = HealthState(agents=agents, grid=grid)
attack_actor = EncodingBasedAttackActor(agents=agents, grid=grid, attack_mapping={1: [2,␣
→˓3]}, stacked_attacks=True)

(continues on next page)

3.2. Built-in Features 43

Abmarl, Release 0.2.6

(continued from previous page)

print(agents['agent0'].action_space)
>>> {'attack': Dict(2:Discrete(3), 3:Discrete(3))}

wrapped_attack_actor = ExclusiveChannelActionWrapper(attack_actor)
print(agents['agent0'].action_space)
>>> {'attack': Discrete(5)}

print(wrapped_attack_actor.wrap_point(Dict({2: Discrete(3), 3: Discrete(3)}), 0))
print(wrapped_attack_actor.wrap_point(Dict({2: Discrete(3), 3: Discrete(3)}), 1))
print(wrapped_attack_actor.wrap_point(Dict({2: Discrete(3), 3: Discrete(3)}), 2))
print(wrapped_attack_actor.wrap_point(Dict({2: Discrete(3), 3: Discrete(3)}), 3))
print(wrapped_attack_actor.wrap_point(Dict({2: Discrete(3), 3: Discrete(3)}), 4))
>>> {2: 0, 3: 0}
>>> {2: 1, 3: 0}
>>> {2: 2, 3: 0}
>>> {2: 0, 3: 1}
>>> {2: 0, 3: 2}

With just the EncodingBasedAttackActor, the agent’s action space is {'attack': Dict(2:Discrete(3),
3:Discrete(3))} and there are 9 possible actions:

1. {2: 0, 3: 0}

2. {2: 0, 3: 1}

3. {2: 0, 3: 2}

4. {2: 1, 3: 0}

5. {2: 1, 3: 1}

6. {2: 1, 3: 2}

7. {2: 2, 3: 0}

8. {2: 2, 3: 1}

9. {2: 2, 3: 2}

When we apply the ExclusiveChannelActionWrapper, the action space becomes {'attack': Discrete(5)}, which
is a result of the channel exlcusion and the ravelling. When unwrapped to the original space, the five possible actions
become

1. {2: 0, 3: 0}

2. {2: 1, 3: 0}

3. {2: 2, 3: 0}

4. {2: 0, 3: 1}

5. {2: 0, 3: 2}

We can see that the channels are exclusive, so that the agent cannot attack both encodings in the same turn.

44 Chapter 3. GridWorld Simulation Framework

CHAPTER

FOUR

FEATURED USE CASES

4.1 Emergent Collaborative and Competitive Behavior

In this experiment, we study how collaborative and competitive behaviors emerge among agents in a partially observable
stochastic game. In our simulation, each agent occupies a square and can move around the map. Each agent can “attack”
agents that are on a different “team”; the attacked agent loses its life and is removed from the simulation. Each agent
can observe the state of the map in a region surrounding its location. It can see other agents and what team they’re on
as well as the edges of the map. The diagram below visuially depicts the agents’ observation and action spaces.

Fig. 1: Each agent has a partial observation of the map centered around its location. The green box shows the orange
agent’s observation of the map, and the matrix below it shows the actual observation. Each agent can choose to move
or to “attack” another agent in one of the nearby squares. The policy is just a simple 2-layer MLP, each layer having
64 units. We don’t apply any kind of specialized architecture that encourages collaboration or competition. Each agent
is simple: they do not have a model of the simulation; they do not have a global view of the simulation; their actions
are only local in both space and in agent interaction (they can only interact with one agent at a time). Yet, we will see
efficient and complex strategies emerge, collaboration and competition from the common or conflicting interest among
agents.

In the various examples below, each policy is a two-layer MLP, with 64 units in each layer. We use RLlib’s A2C Trainer
with default parameters and train for two million episodes on a compute node with 72 CPUs.

45

Abmarl, Release 0.2.6

Attention: This page makes heavy use of animated graphics. It is best to read this content on our html site instead
of our pdf manual.

4.1.1 Single Agent Foraging

We start by considering a single foraging agent whose objective is to move around the map collecting resource agents.
The single forager can see up to three squares away, move up to one square away, and forage (“attack”) resources up to
one square away. The forager is rewarded for every resource it collects and given a small penalty for attempting to move
off the map and an even smaller “entropy” penalty every time-step to encourage it to act quickly. At the beginning of
every episode, the agents spawn at random locations in the map. Below is a video showing a typical full episode of the
learned behavior and a brief analysis.

Note: From an Agent Based Modeling perspective, the resources are technically agents themselves. However, since
they don’t do or see anything, we tend not to call them agents in the text that follows.

Fig. 2: A full episode showing the forager’s learned strategy. The forager is the blue circle and the resources are the
green squares. Notice how the forager bounces among resource clusters, greedily collecting all local resources before
exploring the map for more.

46 Chapter 4. Featured Use Cases

Abmarl, Release 0.2.6

When it can see resources

The forager moves toward the closest resource that it observes and collects it. Note that the foraging range is 1 square:
the forager rarely waits until it is directly over a resource; it usually forages as soon as it is within range. In some cases,
the forager intelligently places itself in the middle of 2-3 resources in order to forage within the least number of moves.
When the resources are near the edge of the map, it behaves with some inefficiency, likely due to the small penalty we
give it for moving off the map, which results in an aversion towards the map edges. Below is a series of short video
clips showing the foraging strategy.

Fig. 3: The forager learns an effective foraging strategy, moving towards and collecting the nearest resources that it
observes.

When it cannot see resources

The forager’s behavior when it is near resources is not surprising. But how does it behave when it cannot see any
resources? The forager only sees that which is near it and does not have any information distinguishing one “deserted”
area of the map from another. Recall, however, that it observes the edges of the map, and it uses this information to
learn an effecive exploration strategy. In the video below, we can see that the forager learns to explore the map by
moving along its edges in a clockwise direction, occasionally making random moves towards the middle of the map.

Important: We do not use any kind of heuristic or mixed policy. The exporation strategy emerges entirely from

4.1. Emergent Collaborative and Competitive Behavior 47

Abmarl, Release 0.2.6

Fig. 4: The forager learns an effective exploration strategy, moving along the edge of the map in a clockwise direction.

48 Chapter 4. Featured Use Cases

Abmarl, Release 0.2.6

reinforcement learning.

4.1.2 Multiple Agents Foraging

Having experimented with a single forager, let us now turn our attention to the strategies learned by multiple foragers
interacting in the map at the same time. Each forager is homogeneous with each other as described above: they can
all move up to one square away, observe up to three squares away, and are rewarded the same way. The observations
include other foragers in addition to the resources and map edges. All agents share a single policy. Below is a brief
analysis of the learned behaviors.

Cover and explore

Our reward schema implicitly encourages the foragers to collaborate because we give a small penalty to each one for
taking too long. Thus, the faster they can collect all the resources, the less they are penalized. Furthermore, because
each agent trains the same policy, there is no incentive for competitive behavior. An agent can afford to say, “I don’t
need to get the resource first. As long as one of us gets it quickly, then we all benefit”. Therefore, the foragers learn to
spread out to cover the map, maximizing the amount of squares that are observed.

In the video clips below, we see that the foragers avoid being within observation distance of one another. Typically,
when two foragers get too close, they repel each other, each moving in opposite directions, ensuring that the space is
covered. Furthermore, notice the dance-like exploration strategy. Similar to the single-agent case above, they learn
to explore along the edges of the map in a clockwise direction. However, they’re not as efficient as the single agent
because they “repel” each other.

Important: We do not directly incentivize agents to keep their distance. No part of the reward schema directly deals
with the agents’ distances from each other. These strategies are emergent.

Breaking the pattern

When a forager observes a resource, it breaks its “cover and explore” strategy and moves directly for the resource. Even
multiple foragers move towards the same resource. They have no reason to coordinate who will get it because, as we
stated above, there is no incentive for competition, so no need to negotiate. If another forager gets there first, everyone
benefits. The foragers learn to prioritize collecting the resources over keeping their distance from each other.

Tip: We should expect to see both of these strategies occuring at the same time within a simulation because while
some agents are “covering and exploring”, others are moving towards resources.

4.1.3 Introducing Hunters

So far, we have seen intelligent behaviors emerge in both single- and multi-forager scenarios; we even saw the emergence
of collaborative behavior. In the following experiments, we explore competitive emergence by introducing hunters into
the simulation. Like foragers, hunters can move up to one square away and observe other agents and map edges up to
three squares away. Hunters, however, are more effective killers and can attack a forager up to two squares away. They
are rewarded for successful kills, they are and penalized for bad moves and for taking too long, exactly the same way
as foragers.

4.1. Emergent Collaborative and Competitive Behavior 49

Abmarl, Release 0.2.6

Fig. 5: The foragers cover the map by spreading out and explore it by traveling in a clockwise direction.

50 Chapter 4. Featured Use Cases

Abmarl, Release 0.2.6

Fig. 6: The foragers move towards resources to forage, even when there are other foragers nearby.

4.1. Emergent Collaborative and Competitive Behavior 51

Abmarl, Release 0.2.6

However, the hunters and foragers have completely different objectives: a forager tries to clear the map of all resources,
but a hunter tries to clear the map of all foragers. Therefore, we set up two policies. All the hunters will train the same
policy, and all the foragers will train the same policy, and these policies will be distinct.

The learned behaviors among the two groups in this mixed collaborate-competitive simulation are tightly integrated,
with multiple strategies appearing at the same time within a simulation. Therefore, in contrast to above, we will not
show video clips that capture a single strategy; instead, we will show video clips that capture multiple strategies and
attempt to describe them in detail.

First Scenario

Two of the foragers spawn next to hunters and are killed immediately. Afterwards, the two hunters on the left do not
observe any foragers for some time. They seem to have learned the cover strategy by spreading out, but they don’t seem
to have learned an effecient explore strategy since they mostly occupy the same region of the map for the duration of
the simulation.

Three foragers remain at the bottom of the map. These foragers work together to collect all nearby resources. Just as
they finish the resource cluster, a hunter moves within range and begins to chase them towards the bottom of the map.
When they hit the edge, they split in two directions. The hunter kills one of them and then waits for one step, unsure
about which forager to persue next. After one step, we see that it decides to persue the forager to the right.

Meanwhile, the forager to the left continues to run away, straight into the path of another hunter but also another
resource. The forager could get away by running to the right, but it decides to collect the resource at the cost of its own
life.

52 Chapter 4. Featured Use Cases

Abmarl, Release 0.2.6

The last remaining forager has escaped the hunter and has conveniently found another cluster of resources, which it
collects. A few frames later, it encounters the same hunter, and this time it is chased all the way across the map. It
manages to evade the hunter and collect one final resource before encountering yet another hunter. At the end, we see
both hunters chasing the forager to the top of the map, boxing it in and killing it.

Second scenario

None of the foragers are under threat at the beginning of this scenario. They clear a cluster of resources before one of
them wanders into the path of a hunter. The hunter gives chase, and the forager actually leads the hunter back to the
group. This works to its benefit, however, as the hunter is repeatedly confused by the foragers exercising the splitting
strategy. Meanwhile the second hunter has spotted a forager and joins the hunt. The two hunters together are able to
split up the pack of foragers and systematically hunt them down. The last forager is chased into the corner and killed.

Note: Humorously, the first forager that was spotted is the one who manages to stay alive the longest.

4.1. Emergent Collaborative and Competitive Behavior 53

Abmarl, Release 0.2.6

54 Chapter 4. Featured Use Cases

CHAPTER

FIVE

INSTALLATION

5.1 User Installation

You can install abmarl via pip:

pip install abmarl

5.2 Developer Installation

To install Abmarl for development, first clone the repository and then install via pip’s development mode.

git clone git@github.com:LLNL/Abmarl.git
cd abmarl
pip install -r requirements.txt
pip install -e . --no-deps

Warning: If you are using conda to manage your virtual environment, then you must also install ffmpeg.

55

Abmarl, Release 0.2.6

56 Chapter 5. Installation

CHAPTER

SIX

FULL TUTORIALS

We provide tutorials that demonstrate how to train, visualize, and analyze MARL policies. We also provide tutorials
on the GridWorldSimulation framework.

6.1 MultiCorridor

MultiCorridor is a multi-agent-based simulation wherein agents must learn to move to the right in a one-dimensonal
corridor to reach the end. Our implementation provides the ability to instantiate multiple agents in the simulation and
restricts agents from occupying the same square. Every agent is homogeneous: they all have the same action space,
observation space, and objective function.

Fig. 1: Animation of agents moving left and right in a corridor until they reach the end.

This tutorial uses the MultiCorridor simulation and the MultiCorridor configuration.

6.1.1 Creating the MultiCorridor Simulation

The Agents in the Simulation

It’s helpful to start by thinking about what we want the agents to learn and what information they will need in order to
learn it. In this tutorial, we want to train agents that can reach the end of a one-dimensional corridor without bumping
into each other. Therefore, agents should be able to move left, move right, and stay still. In order to move to the end of
the corridor without bumping into each other, they will need to see their own position and if the squares near them are
occupied. Finally, we need to decide how to reward the agents. There are many ways we can do this, and we should at
least capture the following:

• The agent should be rewarded for reaching the end of the corridor.

• The agent should be penalized for bumping into other agents.

• The agent should be penalized for taking too long.

Since all our agents are homogeneous, we can create them in the Agent Based Simulation itself, like so:

57

https://github.com/LLNL/Abmarl/blob/main/abmarl/examples/sim/multi_corridor.py
https://github.com/LLNL/Abmarl/blob/main/examples/multi_corridor_example.py

Abmarl, Release 0.2.6

from enum import IntEnum

from gym.spaces import Box, Discrete, MultiBinary
import numpy as np

from abmarl.sim import Agent, AgentBasedSimulation

class MultiCorridor(AgentBasedSimulation):

class Actions(IntEnum): # The three actions each agent can take
LEFT = 0
STAY = 1
RIGHT = 2

def __init__(self, end=10, num_agents=5):
self.end = end
agents = {}
for i in range(num_agents):

agents[f'agent{i}'] = Agent(
id=f'agent{i}',
action_space=Discrete(3), # Move left, stay still, or move right
observation_space={

'position': Box(0, self.end-1, (1,), int), # Observe your own␣
→˓position

'left': MultiBinary(1), # Observe if the left square is occupied
'right': MultiBinary(1) # Observe if the right square is occupied

}
)

self.agents = agents

self.finalize()

Here, notice how the agents’ observation_space is a dict rather than a gym.space.Dict. That’s okay because our Agent
class can convert a dict of gym spaces into a Dict when finalize is called at the end of __init__.

Resetting the Simulation

At the beginning of each episode, we want the agents to be randomly positioned throughout the corridor without
occupying the same squares. We must give each agent a position attribute at reset. We will also create a data structure
that captures which agent is in which cell so that we don’t have to do a search for nearby agents but can directly index
the space. Finally, we must track the agents’ rewards.

def reset(self, **kwargs):
location_sample = np.random.choice(self.end-1, len(self.agents), False)
Track the squares themselves
self.corridor = np.empty(self.end, dtype=object)
Track the position of the agents
for i, agent in enumerate(self.agents.values()):

agent.position = location_sample[i]
self.corridor[location_sample[i]] = agent

Track the agents' rewards over multiple steps.
(continues on next page)

58 Chapter 6. Full Tutorials

Abmarl, Release 0.2.6

(continued from previous page)

self.reward = {agent_id: 0 for agent_id in self.agents}

Stepping the Simulation

The simulation is driven by the agents’ actions because there are no other dynamics. Thus, the MultiCorridor Simulation
only concerns itself with processing the agents’ actions at each step. For each agent, we’ll capture the following cases:

• An agent attempts to move to a space that is unoccupied.

• An agent attempts to move to a space that is already occupied.

• An agent attempts to move to the right-most space (the end) of the corridor.

def step(self, action_dict, **kwargs):
for agent_id, action in action_dict.items():

agent = self.agents[agent_id]
if action == self.Actions.LEFT:

if agent.position != 0 and self.corridor[agent.position-1] is None:
Good move, no extra penalty
self.corridor[agent.position] = None
agent.position -= 1
self.corridor[agent.position] = agent
self.reward[agent_id] -= 1 # Entropy penalty

elif agent.position == 0: # Tried to move left from left-most square
Bad move, only acting agent is involved and should be penalized.
self.reward[agent_id] -= 5 # Bad move

else: # There was another agent to the left of me that I bumped into
Bad move involving two agents. Both are penalized
self.reward[agent_id] -= 5 # Penalty for offending agent
Penalty for offended agent
self.reward[self.corridor[agent.position-1].id] -= 2

elif action == self.Actions.RIGHT:
if self.corridor[agent.position + 1] is None:

Good move, but is the agent done?
self.corridor[agent.position] = None
agent.position += 1
if agent.position == self.end-1:

Agent has reached the end of the corridor!
self.reward[agent_id] += self.end ** 2

else:
Good move, no extra penalty

self.corridor[agent.position] = agent
self.reward[agent_id] -= 1 # Entropy penalty

else: # There was another agent to the right of me that I bumped into
Bad move involving two agents. Both are penalized
self.reward[agent_id] -= 5 # Penalty for offending agent
Penalty for offended agent
self.reward[self.corridor[agent.position+1].id] -= 2

elif action == self.Actions.STAY:
self.reward[agent_id] -= 1 # Entropy penalty

6.1. MultiCorridor 59

Abmarl, Release 0.2.6

Attention: Our reward schema reveals a training dynamic that is not present in single-agent simulations: an
agent’s reward does not entirely depend on its own interaction with the simulation but can be affected by other
agents’ actions. In this case, agents are slightly penalized for being “bumped into” when other agents attempt to
move onto their square, even though the “offended” agent did not directly cause the collision. This is discussed
in MARL literature and captured in the way we have designed our Simulation Managers. In Abmarl, we favor
capturing the rewards as part of the simulation’s state and only “flushing” them once they rewards are asked for in
get_reward.

Note: We have not needed to consider the order in which the simulation processes actions. Our simulation simply
provides the capabilities to process any agent’s action, and we can use Simulation Managers to impose an order. This
shows the flexibility of our design. In this tutorial, we will use the TurnBasedManager, but we can use any Simulation-
Manager.

Querying Simulation State

The trainer needs to see how agents’ actions impact the simulation’s state. They do so via getters, which we define
below.

def get_obs(self, agent_id, **kwargs):
agent_position = self.agents[agent_id].position
if agent_position == 0 or self.corridor[agent_position-1] is None:

left = False
else:

left = True
if agent_position == self.end-1 or self.corridor[agent_position+1] is None:

right = False
else:

right = True
return {

'position': [agent_position],
'left': [left],
'right': [right],

}

def get_done(self, agent_id, **kwargs):
return self.agents[agent_id].position == self.end - 1

def get_all_done(self, **kwargs):
for agent in self.agents.values():

if agent.position != self.end - 1:
return False

return True

def get_reward(self, agent_id, **kwargs):
agent_reward = self.reward[agent_id]
self.reward[agent_id] = 0
return agent_reward

def get_info(self, agent_id, **kwargs):
return {}

60 Chapter 6. Full Tutorials

Abmarl, Release 0.2.6

Rendering for Visualization

Finally, it’s often useful to be able to visualize a simulation as it steps through an episode. We can do this via the render
funciton.

def render(self, *args, fig=None, **kwargs):
draw_now = fig is None
if draw_now:

from matplotlib import pyplot as plt
fig = plt.gcf()

fig.clear()
ax = fig.gca()
ax.set(xlim=(-0.5, self.end + 0.5), ylim=(-0.5, 0.5))
ax.set_xticks(np.arange(-0.5, self.end + 0.5, 1.))
ax.scatter(np.array(

[agent.position for agent in self.agents.values()]),
np.zeros(len(self.agents)),
marker='s', s=200, c='g'

)

if draw_now:
plt.plot()
plt.pause(1e-17)

6.1.2 Training the MultiCorridor Simulation

Now that we have created the simulation and agents, we can create a configuration file for training.

Simulation Setup

We’ll start by setting up the simulation we have just built. Then we’ll choose a Simulation Manager. Abmarl comes
with two built-In managers: TurnBasedManager, where only a single agent takes a turn per step, and AllStepManager,
where all non-done agents take a turn per step. For this experiment, we’ll use the TurnBasedManager. Then, we’ll
wrap the simulation with our MultiAgentWrapper, which enables us to connect with RLlib. Finally, we’ll register the
simulation with RLlib.

MultiCorridor is the simulation we created above
from abmarl.examples import MultiCorridor
from abmarl.managers import TurnBasedManager
MultiAgentWrapper needed to connect with RLlib
from abmarl.external import MultiAgentWrapper

Create an instance of the simulation and register it
sim = MultiAgentWrapper(TurnBasedManager(MultiCorridor()))
sim_name = "MultiCorridor"
from ray.tune.registry import register_env
register_env(sim_name, lambda sim_config: sim)

6.1. MultiCorridor 61

Abmarl, Release 0.2.6

Policy Setup

Now we want to create the policies and the policy mapping function in our multiagent experiment. Each agent in our
simulation is homogeneous: they all have the same observation space, action space, and objective function. Thus, we
can create a single policy and map all agents to that policy.

ref_agent = sim.unwrapped.agents['agent0']
policies = {

'corridor': (None, ref_agent.observation_space, ref_agent.action_space, {})
}
def policy_mapping_fn(agent_id):

return 'corridor'

Experiment Parameters

Having setup the simulation and policies, we can now bundle all that information into a parameters dictionary that will
be read by Abmarl and used to launch RLlib.

params = {
'experiment': {

'title': f'{sim_name}',
'sim_creator': lambda config=None: sim,

},
'ray_tune': {

'run_or_experiment': 'PG',
'checkpoint_freq': 50,
'checkpoint_at_end': True,
'stop': {

'episodes_total': 2000,
},
'verbose': 2,
'config': {

--- Simulation ---
'disable_env_checking': False,
'env': sim_name,
'horizon': 200,
'env_config': {},
--- Multiagent ---
'multiagent': {

'policies': policies,
'policy_mapping_fn': policy_mapping_fn,

},
--- Parallelism ---
Number of workers per experiment: int
"num_workers": 7,
Number of simulations that each worker starts: int
"num_envs_per_worker": 1, # This must be 1 because we are not "threadsafe"

},
}

}

62 Chapter 6. Full Tutorials

Abmarl, Release 0.2.6

Command Line interface

With the configuration file complete, we can utilize the command line interface to train our agents. We simply type
abmarl train multi_corridor_example.py, where multi_corridor_example.py is the name of our configuration
file. This will launch Abmarl, which will process the file and launch RLlib according to the specified parameters.
This particular example should take 1-10 minutes to train, depending on your compute capabilities. You can view the
performance in real time in tensorboard with tensorboard --logdir ~/abmarl_results.

Visualizing the Trained Behaviors

We can visualize the agents’ learned behavior with the visualize command, which takes as argument the output
directory from the training session stored in ~/abmarl_results. For example, the command

abmarl visualize ~/abmarl_results/MultiCorridor-2020-08-25_09-30/ -n 5 --record

will load the experiment (notice that the directory name is the experiment title from the configuration file appended
with a timestamp) and display an animation of 5 episodes. The --record flag will save the animations as .mp4 videos
in the training directory.

6.1.3 Extra Challenges

Having successfully trained a MARL experiment, we can further explore the agents’ behaviors and the training process.
Some ideas are:

• We could enhance the MultiCorridor Simulation so that the “target” cell is a different location in each episode.

• We could introduce heterogeneous agents with the ability to “jump over” other agents. With heterogeneous
agents, we can nontrivially train multiple policies.

• We could study how the agents’ behaviors differ if they are trained using the AllStepManager.

• We could create our own Simulation Manager so that if an agent causes a collision, it skips its next turn.

• We could do a parameter search over both simulation and algorithm parameters to study how the parameters
affect the learned behaviors.

• We could analyze how often agents collide with one another and where those collisions most commonly occur.

• And much, much more!

As we attempt these extra challenges, we will experience one of Abmarl’s strongest features: the ease with which we
can modify our experiment file and launch another training job, going through the pipeline from experiment setup to
behavior visualization and analysis!

6.2 GridWorld

The GridWorld Simulation Framework is composed of feature components that fit together to allow users to create a
variety of simulations using the same pieces and to easily design their own features. We provide tutorials demonstrating
the special features of this framework. First, we create a multi-team battle simulation using built-in features compo-
nents. We then show how the exact same components can be reconfigured to create a maze-navigation simulation.
Finally, we show how easy it is to add custom features as components and plug them into the simulation framework.

6.2. GridWorld 63

Abmarl, Release 0.2.6

6.2.1 Team Battle

The Team Battle scenario involves multiple teams of agents fighting against each other. The goal of each team is to be
the last team alive, at which point the simulation will end. Each agent can move around the grid and attack agents from
other teams. Each agent can observe the grid around its position. We will reward each agent for successful kills and
penalize them for bad moves. This tutorial can be found in full in our repo.

Fig. 2: Agents on four teams battling each other.

First, we import the components that we need. Each component is already in Abmarl, so we don’t need to create
anything new.

from matplotlib import pyplot as plt
import numpy as np

from abmarl.sim.gridworld.base import GridWorldSimulation
from abmarl.sim.gridworld.agent import GridObservingAgent, MovingAgent, AttackingAgent,␣
→˓HealthAgent
from abmarl.sim.gridworld.state import HealthState, PositionState
from abmarl.sim.gridworld.actor import MoveActor, BinaryAttackActor
from abmarl.sim.gridworld.observer import SingleGridObserver
from abmarl.sim.gridworld.done import OneTeamRemainingDone

Then, we define our agent types. This simulation will only have a single type: the BattleAgent. Most of the agents’
attributes will be the same, and we can preconfigure the class definition to save us time when we create the agents later
on.

class BattleAgent(GridObservingAgent, MovingAgent, AttackingAgent, HealthAgent):
def __init__(self, **kwargs):

super().__init__(
move_range=1,

(continues on next page)

64 Chapter 6. Full Tutorials

https://github.com/LLNL/Abmarl/blob/main/abmarl/examples/sim/team_battle_example.py

Abmarl, Release 0.2.6

(continued from previous page)

attack_range=1,
attack_strength=1,
attack_accuracy=1,
view_range=3,
**kwargs

)

Having defined the BattleAgent, we then put all the components together into a single simulation.

class TeamBattleSim(GridWorldSimulation):
def __init__(self, **kwargs):

self.agents = kwargs['agents']

State Components
self.position_state = PositionState(**kwargs)
self.health_state = HealthState(**kwargs)

Action Components
self.move_actor = MoveActor(**kwargs)
self.attack_actor = BinaryAttackActor(**kwargs)

Observation Components
self.grid_observer = SingleGridObserver(**kwargs)

Done Compoennts
self.done = OneTeamRemainingDone(**kwargs)

self.finalize()

Next we define the start state of each simulation. We lean on the State Components to perform the reset. Note that we
must track the rewards explicitly.

class TeamBattleSim(GridWorldSimulation):
...

def reset(self, **kwargs):
self.position_state.reset(**kwargs)
self.health_state.reset(**kwargs)

Track the rewards
self.rewards = {agent.id: 0 for agent in self.agents.values()}

Then we define how the simulation will step forward, leaning on the Actors to process their part of the action. The
Actors’ result determine the agents’ rewards.

class TeamBattleSim(GridWorldSimulation):
...

def step(self, action_dict, **kwargs):
Process attacks:
for agent_id, action in action_dict.items():

agent = self.agents[agent_id]
if agent.active:

(continues on next page)

6.2. GridWorld 65

Abmarl, Release 0.2.6

(continued from previous page)

attack_status, attacked_agents = \
self.attack_actor.process_action(agent, action, **kwargs)

if attack_status: # Attack was attempted
if not attacked_agents: # Attack failed

self.rewards[agent_id] -= 0.1
else:

for attacked_agent in attacked_agents:
if not attacked_agent.active: # Agent has died

self.rewards[attacked_agent.id] -= 1
self.rewards[agent_id] += 1

Process moves
for agent_id, action in action_dict.items():

agent = self.agents[agent_id]
if agent.active:

move_result = self.move_actor.process_action(agent, action, **kwargs)
if not move_result:

self.rewards[agent.id] -= 0.1

Entropy penalty
for agent_id in action_dict:

self.rewards[agent_id] -= 0.01

Finally, we define each of the getters using the Observers and Done components.

class TeamBattleSim(GridWorldSimulation):
...

def get_obs(self, agent_id, **kwargs):
agent = self.agents[agent_id]
return {

**self.grid_observer.get_obs(agent, **kwargs)
}

def get_reward(self, agent_id, **kwargs):
reward = self.rewards[agent_id]
self.rewards[agent_id] = 0
return reward

def get_done(self, agent_id, **kwargs):
return self.done.get_done(self.agents[agent_id])

def get_all_done(self, **kwargs):
return self.done.get_all_done(**kwargs)

def get_info(self, agent_id, **kwargs):
return {}

Now that we’ve defined our agents and simulation, let’s create them and run it. First, we’ll create the agents. There will
be 4 teams, so we want to color the agent by team and start them at different corners of the grid. Besides that, all agent
attributes will be the same, and here we benefit from preconfiguring the attributes in the class definition above.

66 Chapter 6. Full Tutorials

Abmarl, Release 0.2.6

colors = ['red', 'blue', 'green', 'gray'] # Team colors
positions = [np.array([1,1]), np.array([1,6]), np.array([6,1]), np.array([6,6])] # Grid␣
→˓corners
agents = {

f'agent{i}': BattleAgent(
id=f'agent{i}',
encoding=i%4+1,
render_color=colors[i%4],
initial_position=positions[i%4]

) for i in range(24)
}

Having created the agents, we can now build the simulation. We will allow agents from the same team to occupy the
same cell and allow agents to attack other agents if they are on different teams.

overlap_map = {
1: {1},
2: {2},
3: {3},
4: {4}

}
attack_map = {

1: [2, 3, 4],
2: [1, 3, 4],
3: [1, 2, 4],
4: [1, 2, 3]

}
sim = TeamBattleSim.build_sim(

8, 8,
agents=agents,
overlapping=overlap_map,
attack_mapping=attack_map

)

Finally, we can run the simulation with random actions and visualize it. The visualization produces an animation like
the one at the top of this page.

sim.reset()
fig = plt.figure()
sim.render(fig=fig)

done_agents = set()
for i in range(50): # Run for at most 50 steps

action = {
agent.id: agent.action_space.sample() for agent in agents.values() if agent.id␣

→˓not in done_agents
}
sim.step(action)
sim.render(fig=fig)

if sim.get_all_done():
break

for agent in agents:
(continues on next page)

6.2. GridWorld 67

Abmarl, Release 0.2.6

(continued from previous page)

if sim.get_done(agent):
done_agents.add(agent)

Extra Challenges

Having successfully created and run a TeamBattle simulation, we can further explore the GridWorldSimulation frame-
work. Some ideas are:

• Experiment with the number of agents and the impact that has on both the SingleGridObserver and the Multi-
GridObserver.

• Experiment with the number of agents per team as well as the capabilities of those agents. You might find that a
super capable agent is still effective against a team of multiple agents.

• Create a Hunter-Forager simulation, where one team of agents act as immobile resources that can be foraged by
another team, which can be hunted by a third team. Try using the same components here, although you may need
to use a custom done condition.

• Connect this simulation with the Reinforcement Learning capabilities of Abmarl via a Simulation Manager.
What kind of behaviors do the agents learn?

• And much, much more!

6.2.2 Maze Navigation

Using the same components as we did in the Team Battle tutorial, we can create a Maze Navigation Simulation that
contains a single moving agent navigating a maze defined by wall agents in the grid. The moving agent’s goal is to
reach a target agent. We will construct the Grid by reading a grid file. This tutorial can be found in full in our repo.

Fig. 3: Agent (blue) navigating a maze to the target (green).

68 Chapter 6. Full Tutorials

https://github.com/LLNL/Abmarl/blob/main/abmarl/examples/sim/maze_navigation.py

Abmarl, Release 0.2.6

Note: While we have multiple entities like walls and a target agent, the only agent that is actually doing something
is the navigation agent. We will use some custom modifications to make this simulation easier, showing that we can
easily use our components with custom modifications.

First we import the components that we need. Each feature is already in Abmarl, and they are the same features that
we used in the Team Battle tutorial.

from matplotlib import pyplot as plt
import numpy as np

from abmarl.sim.gridworld.base import GridWorldSimulation
from abmarl.sim.gridworld.agent import GridObservingAgent, MovingAgent, GridWorldAgent
from abmarl.sim.gridworld.state import PositionState
from abmarl.sim.gridworld.actor import MoveActor
from abmarl.sim.gridworld.observer import SingleGridObserver

Then, we define our agent types. We need an MazeNavigationAgent, WallAgents to act as the barriers of the maze, and a
TargetAgent to indicate the goal. Although we have these three types, we only need to define the MazeNavigationAgent
because the WallAgent and the TargetAgent are the same as a generic GridWorldAgent.

class MazeNavigationAgent(GridObservingAgent, MovingAgent):
def __init__(self, **kwargs):

super().__init__(move_range=1, **kwargs)

Here we have preconfigured the agent with a move range of 1 becuase that makes the most sense for navigating mazes,
but we have not preconfigured the view range since that is a parameter we may want to adjust, and it is easier to adjust
it at the agent’s initialization.

Then we define the simulation using the components and define all the necessary functions. We find it convient to
explicitly store a reference to the navigation agent and the target agent. Rather than defining a new component for our
simple done condition, we just write the condition itself in the function.

class MazeNaviationSim(GridWorldSimulation):
def __init__(self, **kwargs):

self.agents = kwargs['agents']

Store the navigation and target agents
self.navigator = kwargs['agents']['navigator']
self.target = kwargs['agents']['target']

State Components
self.position_state = PositionState(**kwargs)

Action Components
self.move_actor = MoveActor(**kwargs)

Observation Components
self.grid_observer = SingleGridObserver(**kwargs)

self.finalize()

def reset(self, **kwargs):
self.position_state.reset(**kwargs)

(continues on next page)

6.2. GridWorld 69

Abmarl, Release 0.2.6

(continued from previous page)

Since there is only one agent that produces actions, there is only one reward.
self.reward = 0

def step(self, action_dict, **kwargs):
Only the navigation agent will send actions, so we pull that out
action = action_dict['navigator']
move_result = self.move_actor.process_action(self.navigator, action, **kwargs)
if not move_result:

self.reward -= 0.1

Entropy penalty
self.reward -= 0.01

def get_obs(self, agent_id, **kwargs):
pass the navigation agent itself to the observer becuase it is the only
agent that takes observations
return {

**self.grid_observer.get_obs(self.navigator, **kwargs)
}

def get_reward(self, agent_id, **kwargs):
Custom reward function
if self.get_all_done():

self.reward = 1
reward = self.reward
self.reward = 0
return reward

def get_done(self, agent_id, **kwargs):
return self.get_all_done()

def get_all_done(self, **kwargs):
We define the done condition here directly rather than creating a
separate component for it.
return np.all(self.navigator.position == self.target.position)

def get_info(self, agent_id, **kwargs):
return {}

With everything defined, we’re ready to create and run our simulation. We will create the simulation by reading a
simulation file that shows the positions of each agent type in the grid. We will use maze.txt, which looks like this:

_ _ _ _ W _ W W _ W W _ _ W W _ W _
W _ W _ N _ _ _ _ _ W _ W W _ _ _ _
W W W W _ W W _ W _ _ _ _ W W _ W W
_ W _ _ _ W W _ W _ W W _ _ _ _ _ _
_ _ _ W _ _ W W W _ W _ _ W _ W W _
W W W W _ W W W W W W W _ W _ T W _
_ _ _ _ _ W _ _ _ _ _ _ _ W _ W W _
_ W _ W _ W W W _ W W _ W W _ W _ _

In order to assign meaning to the values in the grid file, we must create an object registry that maps the values in the

70 Chapter 6. Full Tutorials

Abmarl, Release 0.2.6

files to objects. We will use W for WallAgents, N for the NavigationAgent, and T for the TargetAgent. The values of the
object registry must be lambda functions that take one argument and produce an agent.

object_registry = {
'N': lambda n: MazeNavigationAgent(

id=f'navigator',
encoding=1,
view_range=2, # Observation parameter that we can adjust as desired
render_color='blue',

),
'T': lambda n: GridWorldAgent(

id=f'target',
encoding=3,
render_color='green'

),
'W': lambda n: GridWorldAgent(

id=f'wall{n}',
encoding=2,
blocking=True,
render_shape='s'

)
}

Now we can build the simulation from the maze file using the object registry. We must allow the navigation agent
and the target agent to overlap since that is our done condition, and without it the simulation would never end. The
visualization produces an animation like the one at the top of this page.

file_name = 'maze.txt'
sim = MazeNaviationSim.build_sim_from_file(

file_name,
object_registry,
overlapping={1: {3}, 3: {1}}

)
sim.reset()
fig = plt.figure()
sim.render(fig=fig)

for i in range(100):
action = {'navigator': sim.navigator.action_space.sample()}
sim.step(action)
sim.render(fig=fig)
done = sim.get_all_done()
if done:

plt.pause(1)
break

We can examine the observation to see how the walls effect what the navigation agent can observe. An example state
and observation is given below.

-1 -2 -2 -2 -1
0 0 2 0 2
2 0 1 0 0
-2 2 0 2 -2
-2 -2 0 -2 -2

6.2. GridWorld 71

Abmarl, Release 0.2.6

Extra Challenges

We’ve created a starkly different simulation using many of the same components as we did in the TeamBattle tutorial.
We can further explore the capabilities of the GridWorld Simulation Framework, such as:

• Introduce additional navigating agents and modify the simulation so that the agents race to the target.

• Recreate pacman, frogger, and some of your favorite games from the Arcade Learning Environment. Not all
games can be recreated with these components, and some cannot be recreated at all with the GridWorld Simula-
tion Framework (because they are not grid-based).

• Connect this simulation with the Reinforcement Learning capabilities of Abmarl via a Simulation Manager.
Does the agent learng how to solve mazes quickly?

• And much, much more!

6.2.3 Communication Blocking

Consider a simulation in which some agents send messages to each other in an attempt to reach consensus while another
group of agents attempts to block these messages to impede consensus. Abmarl’s GridWorld Simulation Framework
already contains the features for the blocking agents; in this tutorial, we show how to create new components for the
communication feature and connect them with the simulation framework. The tutorial can be found in full in our repo.

72 Chapter 6. Full Tutorials

https://github.com/LLNL/Abmarl/blob/main/abmarl/examples/sim/comms_blocking.py

Abmarl, Release 0.2.6

Fig. 4: Blockers (black) move around the maze blocking communications between broadcasters (green). The simulation
ends when the broadcasters reach consensus.

Using built-in features

Let’s start by laying the groundwork using components already in Abmarl. We create a simulation with position,
movement, and observations.

from matplotlib import pyplot as plt
import numpy as np

from abmarl.sim.gridworld.agent import MovingAgent, GridObservingAgent
from abmarl.sim.gridworld.base import GridWorldSimulation
from abmarl.sim.gridworld.state import PositionState
from abmarl.sim.gridworld.actor import MoveActor
from abmarl.sim.gridworld.observer import SingleGridObserver

class BlockingAgent(MovingAgent, GridObservingAgent):
def __init__(self, **kwargs):

super().__init__(blocking=True, **kwargs)

class BroadcastSim(GridWorldSimulation):
def __init__(self, **kwargs):

self.agents = kwargs['agents']
self.position_state = PositionState(**kwargs)
self.move_actor = MoveActor(**kwargs)
self.grid_observer = SingleGridObserver(**kwargs)

self.finalize()

(continues on next page)

6.2. GridWorld 73

Abmarl, Release 0.2.6

(continued from previous page)

def reset(self, **kwargs):
self.position_state.reset(**kwargs)
self.rewards = {agent.id: 0 for agent in self.agents.values()}

def step(self, action_dict, **kwargs):
process moves
for agent_id, action in action_dict.items():

agent = self.agents[agent_id]
move_result = self.move_actor.process_action(agent, action, **kwargs)
if not move_result:

self.rewards[agent.id] -= 0.1

Entropy penalty
for agent_id in action_dict:

self.rewards[agent_id] -= 0.01

def get_obs(self, agent_id, **kwargs):
agent = self.agents[agent_id]
return {

**self.grid_observer.get_obs(agent, **kwargs),
}

def get_reward(self, agent_id, **kwargs):
reward = self.rewards[agent_id]
self.rewards[agent_id] = 0
return reward

def get_done(self, agent_id, **kwargs):
pass # Define this later

def get_all_done(self, **kwargs):
pass # Define this later

def get_info(self, **kwargs):
return {}

Creating our own communication components

Next we build the communication components ourselves. We know that the GridWorld Simulation Framework is made
up of Agents, States, Actors, Observers, and Dones, so we expect that we’ll need to create each of these for our new
communication feature. Let’s start with the Agent component.

An agent communicates by broadcasting its message to other nearby agents. So we create a new agent with a broad-
cast range and an initial message. The broadcast range will be used by the BroadcastActor to determine successful
broadcasting, and the initial message, an optional parameter, will be used by the BroadcastState to set its message.

from abmarl.sim import Agent
from abmarl.sim.gridworld.agent import GridWorldAgent

class BroadcastingAgent(Agent, GridWorldAgent):
def __init__(self, broadcast_range=None, initial_message=None, **kwargs):

(continues on next page)

74 Chapter 6. Full Tutorials

Abmarl, Release 0.2.6

(continued from previous page)

super().__init__(**kwargs)
self.broadcast_range = broadcast_range
self.initial_message = initial_message

@property
def broadcast_range(self):

return self._broadcast_range

@broadcast_range.setter
def broadcast_range(self, value):

assert type(value) is int and value >= 0, "Broadcast Range must be a nonnegative␣
→˓integer."

self._broadcast_range = value

@property
def initial_message(self):

return self._initial_message

@initial_message.setter
def initial_message(self, value):

if value is not None:
assert -1 <= value <= 1, "Initial message must be a number between -1 and 1."

self._initial_message = value

@property
def message(self):

return self._message

@message.setter
def message(self, value):

self._message = min(max(value, -1), 1)

@property
def configured(self):

return super().configured and self.broadcast_range is not None

Note: We could have split the BroadcastingAgent into two agents types: one type of agent that has an internal message
and another type that broadcasts. This is usually a better approach because it allows you to separate features and use
them in greater combination with other features. We put them together in this tutorial for simplicity.

Next, we create the BroadcastState. This component manages the part of the simulation state that tracks which messages
have been sent among the agents. It will be used by the BroadcastObserver to create the agent’s observations. It also
manages updates to each agent’s message.

from abmarl.sim.gridworld.state import StateBaseComponent

class BroadcastingState(StateBaseComponent):
def reset(self, **kwargs):

for agent in self.agents.values():
if isinstance(agent, BroadcastingAgent):

if agent.initial_message is not None:
(continues on next page)

6.2. GridWorld 75

Abmarl, Release 0.2.6

(continued from previous page)

agent.message = agent.initial_message
else:

agent.message = np.random.uniform(-1, 1)

Tracks agents receiving messages from other agents
self.receiving_state = {

agent.id: [] for agent in self.agents.values() if isinstance(agent,␣
→˓BroadcastingAgent)

}

def update_receipients(self, from_agent, to_agents):
"""
Update messages received from other agents.
"""
for agent in to_agents:

self.receiving_state[agent.id].append((from_agent.id, from_agent.message))

def update_message_and_reset_receiving(self, agent):
"""
Update agent's internal message.

The agent averages all the messages that it has received from other
agents in this step.
"""
receiving_from = self.receiving_state[agent.id]
self.receiving_state[agent.id] = []

messages = [message for _, message in receiving_from]
messages.append(agent.message)
agent.message = np.average(messages)

return receiving_from

Then we define the BroadcastActor. Similar to the BinaryAttackActor, broadcasting will be a boolean action–either
broadcast or don’t broadcast. We provide a broadcast mapping for determining to which encodings each agent can
broadcast. The message will be successfully sent to every agent that (1) is within the broadcast range, (2) has a
compatible encoding, and (3) is not blocked.

from gym.spaces import Discrete
from abmarl.sim.gridworld.actor import ActorBaseComponent
import abmarl.sim.gridworld.utils as gu

class BroadcastingActor(ActorBaseComponent):
"""
Process sending and receiving messages between agents.

BroadcastingAgents can broadcast to compatible agents within their range
according to the broadcast mapping and if the agent is not blocked.
"""
def __init__(self, broadcast_mapping=None, **kwargs):

super().__init__(**kwargs)
self.broadcast_mapping = broadcast_mapping

(continues on next page)

76 Chapter 6. Full Tutorials

Abmarl, Release 0.2.6

(continued from previous page)

for agent in self.agents.values():
if isinstance(agent, self.supported_agent_type):

agent.action_space[self.key] = Discrete(2)

@property
def key(self):

return 'broadcast'

@property
def supported_agent_type(self):

return BroadcastingAgent

@property
def broadcast_mapping(self):

"""
Dict that dictates to which agents the broadcasting agent can broadcast.

The dictionary maps the broadcasting agents' encodings to a list of encodings
to which they can broadcast. For example, the folowing broadcast_mapping:
{

1: [3, 4, 5],
3: [2, 3],

}
means that agents whose encoding is 1 can broadcast other agents whose encodings
are 3, 4, or 5; and agents whose encoding is 3 can broadcast other agents whose
encodings are 2 or 3.
"""
return self._broadcast_mapping

@broadcast_mapping.setter
def broadcast_mapping(self, value):

assert type(value) is dict, "Broadcast mapping must be dictionary."
for k, v in value.items():

assert type(k) is int, "All keys in broadcast mapping must be integer."
assert type(v) is list, "All values in broadcast mapping must be list."
for i in v:

assert type(i) is int, \
"All elements in the broadcast mapping values must be integers."

self._broadcast_mapping = value

def process_action(self, broadcasting_agent, action_dict, **kwargs):
"""
If the agent has chosen to broadcast, then we process their broadcast.

The processing goes through a series of checks. The broadcast is successful
if there is a receiving agent such that:
1. The receiving agent is within range.
2. The receiving agent is compatible according to the broadcast_mapping.
3. The receiving agent is observable by the broadcasting agent.

If the broadcast is successful, then the receiving agent receives the message
in its observation.

(continues on next page)

6.2. GridWorld 77

Abmarl, Release 0.2.6

(continued from previous page)

"""
def determine_broadcast(agent):

Generate local grid and a broadcast mask.
local_grid, mask = gu.create_grid_and_mask(

agent, self.grid, agent.broadcast_range, self.agents
)

Randomly scan the local grid for receiving agents.
receiving_agents = []
for r in range(2 * agent.broadcast_range + 1):

for c in range(2 * agent.broadcast_range + 1):
if mask[r, c]: # We can see this cell

candidate_agents = local_grid[r, c]
if candidate_agents is not None:

for other in candidate_agents.values():
if other.id == agent.id: # Cannot broadcast to yourself

continue
elif other.encoding not in self.broadcast_mapping[agent.

→˓encoding]:
Cannot broadcast to this type of agent
continue

else:
receiving_agents.append(other)

return receiving_agents

if isinstance(broadcasting_agent, self.supported_agent_type):
action = action_dict[self.key]
if action: # Agent has chosen to attack

return determine_broadcast(broadcasting_agent)

Now we define the BroadcastObserver. The observer enables agents to see all received messages, including their own
current message. This observer is unique from all other components we have seen so far because it explicitly relies on
the BroadcastingState component, which will have a small impact in how we initialize the simulation.

from gym.spaces import Dict, Box
from abmarl.sim.gridworld.observer import ObserverBaseComponent

class BroadcastObserver(ObserverBaseComponent):
def __init__(self, broadcasting_state=None, **kwargs):

super().__init__(**kwargs)

assert isinstance(broadcasting_state, BroadcastingState), \
"broadcasting_state must be an instance of BroadcastingState"

self._broadcasting_state = broadcasting_state

for agent in self.agents.values():
if isinstance(agent, self.supported_agent_type):

agent.observation_space[self.key] = Dict({
other.id: Box(-1, 1, (1,))
for other in self.agents.values() if isinstance(other, self.

→˓supported_agent_type)
})

(continues on next page)

78 Chapter 6. Full Tutorials

Abmarl, Release 0.2.6

(continued from previous page)

@property
def key(self):

return 'message'

@property
def supported_agent_type(self):

return BroadcastingAgent

def get_obs(self, agent, **kwargs):
if not isinstance(agent, self.supported_agent_type):

return {}

obs = {other: 0 for other in agent.observation_space[self.key]}
receive_from = self._broadcasting_state.update_message_and_reset_receiving(agent)
for agent_id, message in receive_from:

obs[agent_id] = message
obs[agent.id] = agent.message
return obs

Finally, we can create a custom done condition. We want the broadcasting agents to finish when they’ve reached
consensus; that is, when their internal message is within some tolerance of the average message.

from abmarl.sim.gridworld.done import DoneBaseComponent

class AverageMessageDone(DoneBaseComponent):
def __init__(self, done_tolerance=None, **kwargs):

super().__init__(**kwargs)
self.done_tolerance = done_tolerance

@property
def done_tolerance(self):

return self._done_tolerance

@done_tolerance.setter
def done_tolerance(self, value):

assert type(value) in [int, float], "Done tolerance must be a number."
assert value > 0, "Done tolerance must be positive."
self._done_tolerance = value

def get_done(self, agent, **kwargs):
if isinstance(agent, BroadcastingAgent):

average = np.average([
other.message for other in self.agents.values()
if isinstance(other, BroadcastingAgent)

])
return np.abs(agent.message - average) <= self.done_tolerance

else:
return False

def get_all_done(self, **kwargs):
for agent in self.agents.values():

(continues on next page)

6.2. GridWorld 79

Abmarl, Release 0.2.6

(continued from previous page)

if isinstance(agent, BroadcastingAgent):
if not self.get_done(agent):

return False
return True

Building and running the simulation

Now that all the components have been created, we can create the full simulation:

from abmarl.sim.gridworld.base import GridWorldSimulation

class BroadcastSim(GridWorldSimulation):
def __init__(self, **kwargs):

self.agents = kwargs['agents']

self.position_state = PositionState(**kwargs)
self.broadcasting_state = BroadcastingState(**kwargs)

self.move_actor = MoveActor(**kwargs)
self.broadcast_actor = BroadcastingActor(**kwargs)

self.grid_observer = SingleGridObserver(**kwargs)
self.broadcast_observer = BroadcastObserver(broadcasting_state=self.broadcasting_

→˓state, **kwargs)

self.done = AverageMessageDone(**kwargs)

self.finalize()

def reset(self, **kwargs):
self.position_state.reset(**kwargs)
self.broadcasting_state.reset(**kwargs)

self.rewards = {agent.id: 0 for agent in self.agents.values()}

def step(self, action_dict, **kwargs):
process broadcasts
for agent_id, action in action_dict.items():

agent = self.agents[agent_id]
receiving_agents = self.broadcast_actor.process_action(agent, action,␣

→˓**kwargs)
if receiving_agents is not None:

self.broadcasting_state.update_receipients(agent, receiving_agents)

process moves
for agent_id, action in action_dict.items():

agent = self.agents[agent_id]
move_result = self.move_actor.process_action(agent, action, **kwargs)
if not move_result:

self.rewards[agent.id] -= 0.1

(continues on next page)

80 Chapter 6. Full Tutorials

Abmarl, Release 0.2.6

(continued from previous page)

Entropy penalty
for agent_id in action_dict:

self.rewards[agent_id] -= 0.01

def render(self, **kwargs):
super().render(**kwargs)
for agent in self.agents.values():

if isinstance(agent, BroadcastingAgent):
print(f"{agent.id}: {agent.message}")

print()

def get_obs(self, agent_id, **kwargs):
agent = self.agents[agent_id]
return {

**self.grid_observer.get_obs(agent, **kwargs),
**self.broadcast_observer.get_obs(agent, **kwargs)

}

def get_reward(self, agent_id, **kwargs):
reward = self.rewards[agent_id]
self.rewards[agent_id] = 0
return reward

def get_done(self, agent_id, **kwargs):
return self.done.get_done(agent_id, **kwargs)

def get_all_done(self, **kwargs):
return self.done.get_all_done(**kwargs)

def get_info(self, **kwargs):
return {}

Let’s initialize our simulation and run it. We initialize some BroadcastingAgents and some BlockingAgents. Then we
initialize the simulation with a broadcast mapping that specifies that broadcasts can only be made amongst agents with
encoding 1, which are the BroadcastingAgents.

agents = {
'broadcaster0': BroadcastingAgent(id='broadcaster0', encoding=1, broadcast_range=6,␣

→˓render_color='green'),
'broadcaster1': BroadcastingAgent(id='broadcaster1', encoding=1, broadcast_range=6,␣

→˓render_color='green'),
'broadcaster2': BroadcastingAgent(id='broadcaster2', encoding=1, broadcast_range=6,␣

→˓render_color='green'),
'broadcaster3': BroadcastingAgent(id='broadcaster3', encoding=1, broadcast_range=6,␣

→˓render_color='green'),
'blocker0': BlockingAgent(id='blocker0', encoding=2, move_range=2, view_range=3,␣

→˓render_color='black'),
'blocker1': BlockingAgent(id='blocker1', encoding=2, move_range=1, view_range=3,␣

→˓render_color='black'),
'blocker2': BlockingAgent(id='blocker2', encoding=2, move_range=1, view_range=3,␣

→˓render_color='black'),
}

(continues on next page)

6.2. GridWorld 81

Abmarl, Release 0.2.6

(continued from previous page)

sim = BroadcastSim.build_sim(
7, 7,
agents=agents,
broadcast_mapping={1: [1]},
done_tolerance=5e-10

)

sim.reset()
fig = plt.figure()
sim.render(fig=fig)

done_agents = set()
for i in range(50):

action = {
agent.id: agent.action_space.sample() for agent in agents.values() if agent.id␣

→˓not in done_agents
}
sim.step(action)
for agent in agents:

if agent not in done_agents:
obs = sim.get_obs(agent)

if sim.get_done(agent):
done_agents.add(agent)

sim.render(fig=fig)
if sim.get_all_done():

break

The visualization produces an animation like the one at the top of this page. We can see the “path towards consensus”
among the BroadcastingAgents in the output. Keep your eye open for the effects of blocking.

Step 1
broadcaster0: 0.5936447861764813
broadcaster1: -0.8344218389696239
broadcaster2: 0.09891331950679949
broadcaster3: 0.32590416873488093

Step 2
broadcaster0: 0.028375705313912796
broadcaster1: -0.25425883511737146
broadcaster2: -0.13653478357598114
broadcaster3: -0.25425883511737146

For steps 3-5, notice that Broadcaster3 is blocked. The other broadcasters
have reached a consensus, but the simulation does not end becaue they must all
agree.

Step 3
broadcaster0: -0.12080597112647994
broadcaster1: -0.12080597112647994
broadcaster2: -0.12080597112647995
broadcaster3: -0.15416918712420283

(continues on next page)

82 Chapter 6. Full Tutorials

Abmarl, Release 0.2.6

(continued from previous page)

Step 4
broadcaster0: -0.12080597112647994
broadcaster1: -0.12080597112647994
broadcaster2: -0.12080597112647995
broadcaster3: -0.15416918712420283

Step 5
broadcaster0: -0.12080597112647994
broadcaster1: -0.12080597112647994
broadcaster2: -0.12080597112647995
broadcaster3: -0.15416918712420283

Broadcaster3 is no longer blocked
Step 6
broadcaster0: -0.12080597112647995
broadcaster1: -0.12080597112647995
broadcaster2: -0.12080597112647995
broadcaster3: -0.1319270431257209

...

Step 16
broadcaster0: -0.1241744002450772
broadcaster1: -0.12417639653661512
broadcaster2: -0.12417523451616769
broadcaster3: -0.12417511533458334

Step 17
broadcaster0: -0.12417528665811084
broadcaster1: -0.12417528665811083
broadcaster2: -0.12417528665811083
broadcaster3: -0.12417528665811084

Extra Challenges

Having successfully created new components and fit them into the GridWorld Simulation Framework, we can create a
vast variety of different simulations, constrained primarily by our own imagination. We leave the extra challenges up
to you and what you can think of.

6.2. GridWorld 83

Abmarl, Release 0.2.6

84 Chapter 6. Full Tutorials

CHAPTER

SEVEN

ABMARL API SPECIFICATION

7.1 Abmarl Simulations

class abmarl.sim.PrincipleAgent(id=None, seed=None, **kwargs)
Principle Agent class for agents in a simulation.

property active

True if the agent is still active in the simulation.

Active means that the agent is in a valid state. For example, suppose agents in our Simulation can die. Then
active is True if the agents are alive or False if they’re dead.

property configured

All agents must have an id.

finalize(**kwargs)

property id

The agent’s unique identifier.

property seed

Seed for random number generation.

class abmarl.sim.ObservingAgent(observation_space=None, null_observation=None, **kwargs)
ObservingAgents can observe the state of the simulation.

The agent’s observation must be in its observation space. The SimulationManager will send the observation to
the Trainer, which will use it to produce actions.

property configured

Observing agents must have an observation space.

finalize(**kwargs)
Wrap all the observation spaces with a Dict and seed it if the agent was created with a seed.

property null_observation

The null point in the observation space.

property observation_space

class abmarl.sim.ActingAgent(action_space=None, null_action=None, **kwargs)
ActingAgents can act in the simulation.

The Trainer will produce actions for the agents and send them to the SimulationManager, which will process
those actions in its step function.

85

Abmarl, Release 0.2.6

property action_space

property configured

Acting agents must have an action space.

finalize(**kwargs)
Wrap all the action spaces with a Dict if applicable and seed it if the agent was created with a seed.

property null_action

The null point in the action space.

class abmarl.sim.Agent(observation_space=None, null_observation=None, **kwargs)
Bases: ObservingAgent, ActingAgent

An Agent that can both observe and act.

class abmarl.sim.AgentBasedSimulation

AgentBasedSimulation interface.

Under this design model the observations, rewards, and done conditions of the agents is treated as part of the
simulations internal state instead of as output from reset and step. Thus, it is the simulations responsibility to
manage rewards and dones as part of its state (e.g. via self.rewards dictionary).

This interface supports both single- and multi-agent simulations by treating the single-agent simulation as a
special case of the multi-agent, where there is only a single agent in the agents dictionary.

property agents

A dict that maps the Agent’s id to the Agent object. An Agent must be an instance of PrincipleAgent.
A multi-agent simulation is expected to have multiple entries in the dictionary, whereas a single-agent
simulation should only have a single entry in the dictionary.

finalize()

Finalize the initialization process. At this point, every agent should be configured with action and observa-
tion spaces, which we convert into Dict spaces for interfacing with the trainer.

abstract get_all_done(**kwargs)
Return the simulation’s done status.

abstract get_done(agent_id, **kwargs)
Return the agent’s done status.

abstract get_info(agent_id, **kwargs)
Return the agent’s info.

abstract get_obs(agent_id, **kwargs)
Return the agent’s observation.

abstract get_reward(agent_id, **kwargs)
Return the agent’s reward.

abstract render(**kwargs)
Render the simulation for vizualization.

abstract reset(**kwargs)
Reset the simulation simulation to a start state, which may be randomly generated.

abstract step(action, **kwargs)
Step the simulation forward one discrete time-step. The action is a dictionary that contains the action of
each agent in this time-step.

86 Chapter 7. Abmarl API Specification

Abmarl, Release 0.2.6

class abmarl.sim.DynamicOrderSimulation

An AgentBasedSimulation where the simulation chooses the agents’ turns dynamically.

property next_agent

The next agent(s) in the game.

7.2 Abmarl Simulation Managers

class abmarl.managers.SimulationManager(sim, **kwargs)
Control interaction between Trainer and AgentBasedSimulation.

A Manager implmenents the reset and step API, by which it calls the AgentBasedSimulation API, using the
getters within reset and step to accomplish the desired control flow.

sim

The AgentBasedSimulation.

agents

The agents that are in the AgentBasedSimulation.

done_agents

Set of agents that are done.

render(**kwargs)

abstract reset(**kwargs)
Reset the simulation.

Returns
The first observation of the agent(s).

abstract step(action_dict, **kwargs)
Step the simulation forward one discrete time-step.

Parameters
action_dict – Dictionary mapping agent(s) to their actions in this time step.

Returns

The observations, rewards, done status, and info for the agent(s) whose actions we expect to
receive next.

Note: We do not necessarily return anything for the agent whose actions we just received in
this time-step. This behavior is defined by each Manager.

class abmarl.managers.TurnBasedManager(sim)

The TurnBasedManager allows agents to take turns. The order of the agents is stored and the obs of the first agent
is returned at reset. Each step returns the info of the next agent “in line”. Agents who are done are removed from
this line. Once all the agents are done, the manager returns all done.

reset(**kwargs)
Reset the simulation and return the observation of the first agent.

step(action_dict, **kwargs)
Assert that the incoming action does not come from an agent who is recorded as done. Step the simulation
forward and return the observation, reward, done, and info of the next agent. If that next agent finished in
this turn, then include the obs for the following agent, and so on until an agent is found that is not done. If
all agents are done in this turn, then the wrapper returns all done.

7.2. Abmarl Simulation Managers 87

Abmarl, Release 0.2.6

class abmarl.managers.AllStepManager(sim, randomize_action_input=False, **kwargs)
The AllStepManager gets the observations of all agents at reset. At step, it gets the observations of all the agents
that are not done. Once all the agents are done, the manager returns all done.

property randomize_action_input

Randomize the order of the action input at each step.

Multiple agents will report actions within a single step. Depending on how those actions are generated,
the ordering within the action_dict may always be the same, which may result in unintended imposed-
ordering in the simulation. For example, agent0’s action may always come before agent1’s. If random-
ize_action_input is set to True, then the agent ordering in the action dict is randomized each step.

reset(**kwargs)
Reset the simulation and return the observation of all the agents.

step(action_dict, **kwargs)
Assert that the incoming action does not come from an agent who is recorded as done. Step the simulation
forward and return the observation, reward, done, and info of all the non-done agents, including the agents
that were done in this step. If all agents are done in this turn, then the manager returns all done.

class abmarl.managers.DynamicOrderManager(sim)

The DynamicOrderManager allows agents to take turns dynamically decided by the Simulation.

The order of the agents is dynamically decided by the simulation as it runs. The simulation must be a Dynami-
cOrderSimulation. The agents reported at reset and step are those given in the sim’s next_agent property.

reset(**kwargs)
Reset the simulation and return the observation of the first agent.

step(action_dict, **kwargs)
Assert that the incoming action does not come from an agent who is recorded as done. Step the simulation
forward and return the observation, reward, done, and info of the next agent. The simulation is responsible
to ensure that there is at least one next_agent that did not finish in this turn, unless it is the last turn.

7.3 Abmarl Wrappers

class abmarl.sim.wrappers.RavelDiscreteWrapper(sim)

Convert observation and action spaces into a Discrete space.

Convert Discrete, MultiBinary, MultiDiscrete, bounded integer Box, and any nesting of these observations and
actions into Discrete observations and actions by “ravelling” their values according to numpy’s ravel_mult_index
function. Thus, observations and actions that are represented by arrays are converted into unique numbers. This
is useful for building Q tables where each observation and action is a row and column of the Q table, respectively.

If the agent has a null observation or a null action, that value is also ravelled into the new Discrete space.

unwrap_action(from_agent, action)

unwrap_observation(from_agent, observation)

wrap_action(from_agent, action)

wrap_observation(from_agent, observation)

88 Chapter 7. Abmarl API Specification

Abmarl, Release 0.2.6

class abmarl.sim.wrappers.FlattenWrapper(sim)

Flattens all agents’ action and observation spaces into Boxes.

Nested spaces (e.g. Tuples and Dicts) are flattened element-wise, each element being concatentated onto the
previous. A Discrete space is converted to a Box with a single element, whose bounds are 0 to space.n - 1.
MultiBinary and MultiDiscrete are simply converted to Box with the corresponding bounds and integer dtype.
A Box space is flattened to a one-dimensional array equivalent.

If the resulting Box can be made with dtype int, then it will be. Otherwise, it will cast up to float.

If the agent has a null observation or a null action, that value is also flattened into the new Box space.

NOTE: Sampling from the flattened space will not produce the same results as sampling from the original space
and then flattening.

unwrap_action(from_agent, action)

unwrap_observation(from_agent, observation)

wrap_action(from_agent, action)

wrap_observation(from_agent, observation)

class abmarl.sim.wrappers.SuperAgentWrapper(sim, super_agent_mapping=None, **kwargs)
The SuperAgentWrapper creates “super” agents who cover and control multiple agents.

The super agents take the observation and action spaces of all their covered agents. In addition, the observation
space is given a “mask” channel to indicate which of their covered agents is done. This channel is important
because the simulation dynamics change when a covered agent is done but the super agent may still be active (see
comments on get_done). Without this mask, the super agent would experience completely different simulation
dynamcis for some of its covered agents with no indication as to why.

Unless handled carefully, the super agent will generate observations for done covered agents. This may contami-
nate the training data with an unfair advantage. For exmample, a dead covered agent should not be able to provide
the super agent with useful information. In order to correct this, the user may supply the null observation for
an ObservingAgent. When a covered agent is done, the SuperAgentWrapper will try to use its null observation
going forward.

Furthermore, super agents may still report actions for covered agents that are done. This wrapper filters out those
actions before passing them to the underlying sim. See step for more details.

get_done(agent_id, **kwargs)
Report the agent’s done condition.

Because super agents are composed of multiple agents, it could be the case that some covered agents are
done while other are not for the same super agent. Because we still want those non-done agents to interact
with the simulation, the super agent only reports done when ALL of its covered agents report done.

Parameters
agent_id – The id of the agent for whom to report the done condition. Should not be a
covered agent.

Returns

The requested done conndition. Super agents are done when all their
covered agents are done.

get_info(agent_id, **kwargs)
Report the agent’s additional info.

Parameters
agent_id – The id of the agent for whom to get info. Should not be a covered agent.

7.3. Abmarl Wrappers 89

Abmarl, Release 0.2.6

Returns
The requested info. Super agents info is collected from covered agents.

get_obs(agent_id, **kwargs)
Report observations from the simulation.

Super agent observations are collected from their covered agents. Super agents also have a “mask” channel
that tells them which of their covered agent is done. This should assist the super agent in understanding the
changing simulation dynamics for done agents (i.e. why actions from done agents don’t do anything).

The super agent will report an observation for done covered agents. This may result in an unfair advantage
during training (e.g. dead agent should not produce useful information), and Abmarl will issue a warning.
To properly handle this, the user can supply the null observation for each covered agent. In that case, the
super agent will use the null observation for any done covered agents.

Parameters
agent_id – The id of the agent for whom to produce an observation. Should not be a covered
agent.

Returns
The requested observation. Super agent observations are collected from the covered agents.

get_reward(agent_id, **kwargs)
Report the agent’s reward.

A super agent’s reward is the sum of all its active covered agents’ rewards.

Parameters
agent_id – The id of the agent for whom to report the reward. Should not be a covered agent.

Returns

The requested reward. Super agent rewards are summed from the active covered
agents.

reset(**kwargs)
Reset the simulation simulation to a start state, which may be randomly generated.

step(action_dict, **kwargs)
Give actions to the simulation.

Super agent actions are decomposed into the covered agent actions and then passed to the underlying sim.
Because of the nature of this wrapper, the super agents may provide actions for covered agents that are
already done. We filter out these actions.

Parameters
action_dict – Dictionary that maps agent ids to the actions. Covered agents should not be
present.

property super_agent_mapping

A dictionary that maps from a super agent’s id to a list of covered agent ids.

Suppose our simulation has 5 agents and we use the following super agent mapping: {‘super0’: [‘agent0’,
‘agent1’], ‘super1’: [‘agent3’, ‘agent4’]} The resulting agents dict would have keys ‘super0’, ‘super1’, and
‘agent2’; where ‘agent0’, ‘agent1’, ‘agent3’, and ‘agent4’ have been covered by the super agents and ‘agent2’
is left uncovered and therefore included in the dict of agents. If the super agent mapping is changed, then
the dictionary of agents gets recreated immediately.

Super agents cannot have the same id as any of the agents in the simulation. Two super agents cannot cover
the same agent. All covered agents must be learning agents.

90 Chapter 7. Abmarl API Specification

Abmarl, Release 0.2.6

7.4 Abmarl External Integration

class abmarl.external.GymWrapper(sim)

Wrap an AgentBasedSimulation object with only a single learning agent to the gym.Env interface. This wrapper
exposes the single agent’s observation and action space directly in the simulation.

property action_space

The agent’s action space is the environment’s action space.

property observation_space

The agent’s observation space is the environment’s observation space.

render(**kwargs)
Forward render calls to the composed simulation.

reset(**kwargs)
Return the observation from the single agent.

step(action, **kwargs)
Wrap the action by storing it in a dict that maps the agent’s id to the action. Pass to sim.step. Return the
observation, reward, done, and info from the single agent.

property unwrapped

Fall through all the wrappers and obtain the original, completely unwrapped simulation.

class abmarl.external.MultiAgentWrapper(sim)

Enable connection between SimulationManager and RLlib Trainer.

Wraps a SimulationManager and forwards all calls to the manager. This class is boilerplate and needed because
RLlib checks that the simulation is an instance of MultiAgentEnv.

sim

The SimulationManager.

render(*args, **kwargs)
See SimulationManager.

reset()

See SimulationManager.

step(actions)
See SimulationManager.

class abmarl.external.OpenSpielWrapper(sim, discounts=1.0, **kwargs)
Enable connection between Abmarl’s SimulationManager and OpenSpiel agents.

OpenSpiel support turn-based and simultaneous simulations, which Abmarl provides through the TurnBased-
Manager and AllStepManager. OpenSpiel expects TimeStep objects as output, which include the observations,
rewards, and step type. Among the observations, it expects a list of legal actions available to the agent. The
OpenSpielWrapper converts output from the simulation manager to the expected format. Furthermore, Open-
Spiel provides actions as a list. The OpenSpielWrapper converts those actions to a dict before forwarding it to
the underlying simulation manager.

OpenSpiel does not support the ability for some agents in a simulation to finish before others. The simulation
is either ongoing, in which all agents are providing actions, or else it is done for all agents. In contrast, Abmarl
allows some agents to be done before others as the simulation progresses. Abmarl expects that done agents will
not provide actions. OpenSpiel, however, will always provide actions for all agents. The OpenSpielWrapper
removes the actions from agents that are already done before forwarding the action to the underlying simulation

7.4. Abmarl External Integration 91

Abmarl, Release 0.2.6

manager. Furthermore, OpenSpiel expects every agent to be present in the TimeStep outputs. Normally, Abmarl
will not provide output for agents that are done since they have finished generating data in the episode. In order to
work with OpenSpiel, the OpenSpielWrapper forces output from all agents at every step, including those already
done.

Currently, the OpenSpielWrapper only works with simulations in which the action and observation space of every
agent is Discrete. Most simulations will need to be wrapped with the RavelDiscreteWrapper.

action_spec()

The agents’ action spaces.

Abmarl uses gym spaces for the action space. The OpenSpielWrapper converts the gym space into a format
that OpenSpiel expects.

property current_player

The agent that currently provides the action.

Current player is used in the observation part of the TimeStep output. If it is a turn based simulation, then
the current player is the single agent who is providing an action. If it is a simultaneous simulation, then
OpenSpiel does not use this property and the current player is just the first agent in the list of agents in the
simulation.

property discounts

The learing discounts for each agent.

If provided as a number, then that value wil apply to all the agents. Make seperate discounts for each agent
by providing a dictionary assigning each agent to its own discounted value.

get_legal_actions(agent_id)
Return the legal actions available to the agent.

By default, the OpenSpielWrapper uses the agent’s entire action space as its legal actions in each time
step. This function can be overwritten in a derived class to add logic for obtaining the actual legal actions
available.

property is_turn_based

TurnBasedManager.

property num_players

The number of learning agents in the simulation.

observation_spec()

The agents’ observations spaces.

Abmarl uses gym spaces for the observation space. The OpenSpielWrapper converts the gym space into a
format that OpenSpiel expects.

reset(**kwargs)
Reset the simulation.

Returns

TimeStep object containing the initial observations. Uniquely at reset,
the rewards and discounts are None and the step type is StepType.FIRST.

step(action_list, **kwargs)
Step the simulation forward using the reported actions.

OpenSpiel provides an action list of either (1) the agent whose turn it is in a turn-based simulation or (2) all
the agents in a simultaneous simulation. The OpenSpielWrapper converts the list of actions to a dictionary
before passing it to the underlying simulation.

92 Chapter 7. Abmarl API Specification

Abmarl, Release 0.2.6

OpenSpiel does not support the ability for some agents of a simulation to finish before others. As such, it
may provide actions for agents that are already done. To work with Abmarl, the OpenSpielWrapper removes
actions for agents that are already done.

Parameters
action_list – list of actions for the agents.

Returns
TimeStep object containing the observations of the new state, the rewards, and StepType.MID
if the simulation is still progressing, otherwise StepType.LAST.

7.5 Abmarl GridWorld Simulation Framework

7.5.1 Base

class abmarl.sim.gridworld.base.GridWorldSimulation

GridWorldSimulation interface.

Extends the AgentBasedSimulation interface for the GridWorld. We provide builders for streamlining the build-
ing process.

classmethod build_sim(rows, cols, **kwargs)
Build a GridSimulation.

Specify the number of row, the number of cols, a dictionary of agents, and any additional parameters.

Parameters

• rows – The number of rows in the grid. Must be a positive integer.

• cols – The number of cols in the grid. Must be a positive integer.

• agents – The dictionary of agents in the grid.

Returns
A GridSimulation configured as specified.

classmethod build_sim_from_array(array, object_registry, extra_agents=None, **kwargs)
Build a GridSimulation from an array.

Parameters

• array – An array from which to build the initial grid. Each entry should be an alphanu-
meric character indicating which agent will be at that location. The agent will be given that
initial position.

• object_registry – A dictionary that maps the characters in the array to a function that
generates the agent with its unique id. Zeros, periods, and underscores are reserved for
empty space.

• extra_agents – A dictionary of agents which are not in the input grid but which we want
to be a part of the simulation. Note: if there is an agent in the array and in extra_agents,
we will use the one from the array.

Returns
A GridSimulation built from the array along with any extra agents.

7.5. Abmarl GridWorld Simulation Framework 93

Abmarl, Release 0.2.6

classmethod build_sim_from_file(file_name, object_registry, extra_agents=None, **kwargs)
Build a GridSimulation from a text file.

Parameters

• file_name – Name of the file that specifies the initial grid setup. In the file, each cell
should be a single alphanumeric character indicating which agent will be at that position
(from the perspective of looking down on the grid). That agent will be given that initial
position.

• object_registry – A dictionary that maps characters from the file to a function that
generates the agent. This must be a function because each agent must have unique id,
which is generated here. Zeros, periods, and underscores are reserved for empty space.

• extra_agents – A dictionary of agents which are not in the input grid but which we want
to be a part of the simulation. Note: if there is an agent in the file and in extra_agents, we
will use the one from the file.

Returns
A GridSimulation built from the file along with any extra agents.

classmethod build_sim_from_grid(grid, extra_agents=None, **kwargs)
Build a GridSimluation from a Grid object.

Parameters

• grid – A Grid contains the all the agents index by location, so we can construct a simluation
from it.

• extra_agents – A dictionary of agents which are not in the input grid but which we want
to be a part of the simulation. Note: if there is an agent in the grid and in extra_agents, we
will use the one from the grid.

Returns
A GridSimulation built from the grid along with any extra agents.

render(fig=None, **kwargs)
Draw the grid and all active agents in the grid.

Agents are drawn at their positions using their respective shape and color.

Parameters
fig – The figure on which to draw the grid. It’s important to provide this figure because the
same figure must be used when drawing each state of the simulation. Otherwise, a ton of
figures will pop up, which is very annoying.

class abmarl.sim.gridworld.base.GridWorldBaseComponent(agents=None, grid=None, **kwargs)
Component base class from which all components will inherit.

Every component has access to the dictionary of agents and the grid.

property agents

A dict that maps the Agent’s id to the Agent object. All agents must be GridWorldAgents.

property cols

The number of columns in the grid.

property grid

The grid indexes the agents by their position.

For example, an agent whose position is (3, 2) can be accessed through the grid with self.grid[3, 2].
Components are responsible for maintaining the connection between agent position and grid index.

94 Chapter 7. Abmarl API Specification

Abmarl, Release 0.2.6

property rows

The number of rows in the grid.

class abmarl.sim.gridworld.grid.Grid(rows, cols, overlapping=None, **kwargs)
A Grid stores the agents at indices in a numpy array.

Components can interface with the Grid. Each index in the grid is a dictionary that maps the agent id to the agent
object itself. If agents can overlap, then there may be more than one agent per cell.

Parameters

• rows – The number of rows in the grid.

• cols – The number of columns in the grid.

• overlapping – Overlapping matrix tracks which agents can overlap based on their encod-
ings.

property cols

The number of columns in the grid.

property overlapping

Overlapping matrix tracks which agents can overlap based on their encodings.

A dictionary that maps agents’ encodings to a set of encodings with which they can overlap. If the overlap-
ping matrix is not symmetrical, then we update it here to be symmetrical. That is, if 2 can overlap with 3,
then 3 can overlap with 2.

place(agent, ndx)
Place an agent at an index.

If the cell is available, the agent will be placed at that index in the grid and the agent’s position will be
updated. The placement is successful if the new position is unoccupied or if the agent already occupying
that position is overlappable AND this agent is overlappable.

Parameters

• agent – The agent to place.

• ndx – The new index for this agent.

Returns
The successfulness of the placement.

query(agent, ndx)
Query a cell in the grid to see if is available to this agent.

The cell is available for the agent if it is empty or if both the occupying agent and the querying agent are
overlappable.

Parameters

• agent – The agent for which we are checking availabilty.

• ndx – The cell to query.

Returns
The availability of this cell.

remove(agent, ndx)
Remove an agent from an index.

Parameters

7.5. Abmarl GridWorld Simulation Framework 95

Abmarl, Release 0.2.6

• agent – The agent to remove

• ndx – The old index for this agent

reset(**kwargs)
Reset the grid to an empty state.

property rows

The number of rows in the grid.

7.5.2 Agents

class abmarl.sim.gridworld.agent.GridWorldAgent(initial_position=None, blocking=False,
encoding=None, render_shape='o',
render_color='gray', **kwargs)

The base agent in the GridWorld.

property blocking

Specify if this agent blocks other agent’s observations and actions.

property configured

All agents must have an id.

property encoding

The numerical value that identifies the type of agent.

The value does not necessarily identify the agent itself. For example, other agents who observe this agent
will see this value.

property initial_position

The agent’s initial position at reset.

property position

The agent’s position in the grid.

property render_color

The agent’s color in the rendered grid.

property render_shape

The agent’s shape in the rendered grid.

class abmarl.sim.gridworld.agent.GridObservingAgent(view_range=None, **kwargs)
Observe the grid up to view range cells away.

property configured

Observing agents must have an observation space.

property view_range

The number of cells away this agent can observe in each step.

class abmarl.sim.gridworld.agent.MovingAgent(move_range=None, **kwargs)
Move up to move_range cells.

property configured

Acting agents must have an action space.

96 Chapter 7. Abmarl API Specification

Abmarl, Release 0.2.6

property move_range

The maximum number of cells away that the agent can move.

class abmarl.sim.gridworld.agent.HealthAgent(initial_health=None, **kwargs)
Agents have health points and can die.

Health is bounded between 0 and 1. Agents become inactive when the health falls to 0.

property health

The agent’s health throughout the simulation trajectory.

The health will always be between 0 and 1.

property initial_health

The agent’s initial health between 0 and 1.

class abmarl.sim.gridworld.agent.AttackingAgent(attack_range=None, attack_strength=None,
attack_accuracy=None, attack_count=1, **kwargs)

Agents that can attack other agents.

property attack_accuracy

The effective accuracy of the agent’s attack.

Should be between 0 and 1. To make deterministic attacks, use 1.

property attack_count

The number of attacks the agent can make per turn.

This parameter is interpreted differently by each attack actor, but generally it specifies how many attacks
this agent can carry out in a single step. See specific AttackActor documentation for more information.

property attack_range

The maximum range of the attack.

property attack_strength

The strength of the attack.

Should be between 0 and 1.

property configured

Acting agents must have an action space.

7.5.3 State

class abmarl.sim.gridworld.state.StateBaseComponent(agents=None, grid=None, **kwargs)
Abstract State Component base from which all state components will inherit.

abstract reset(**kwargs)
Resets the part of the state for which it is responsible.

class abmarl.sim.gridworld.state.PositionState(no_overlap_at_reset=False, **kwargs)
Manage the agents’ positions in the grid.

property no_overlap_at_reset

Attempt to place each agent on its own cell.

Agents with initial positions will override this property.

7.5. Abmarl GridWorld Simulation Framework 97

Abmarl, Release 0.2.6

property ravelled_positions_available

A dictionary mapping the enodings to a list of positions available to agents of that encoding at reset. The
list should contain cells represented in their ravelled form.

reset(**kwargs)
Give agents their starting positions.

We use the agent’s initial position if it exists. Otherwise, we randomly place the agents in the grid.

class abmarl.sim.gridworld.state.MazePlacementState(target_agent=None, barrier_encodings=None,
free_encodings=None, cluster_barriers=False,
scatter_free_agents=False, **kwargs)

Place agents in the grid based on a maze generated around a target.

Partition the cells into two categories, either a free cell or a barrier, based on a maze, which is generated starting
at a target agent’s position. Specify available positions as follows: barrier-encoded agents will be placed at the
maze barriers, free-encoded agents will be placed at free positions.

Note: Because the maze is randomly generated at the beginning of each episode and because the agents must be
placed in either a free cell or barrier cell according to their encodings, it is highly recommended that none of
your agents be given initial positions, except for the target agent.

Parameters

• target_agent – Start the maze generation at this agent’s position and place the target agent
here.

• barrier_encodings – A set of encodings corresponding to the maze’s barrier cells.

• free_encodings – A set of encodigns corresponding to the maze’s free cells.

• cluster_barriers – Prioritize the placement of barriers near the target.

• scatter_free_agents – Prioritize the placement of free agents away from the target.

property barrier_encodings

A set of encodings corresponding to the maze’s barrier cells.

property cluster_barriers

If True, then prioritize placing barriers near the target agent.

property free_encodings

A set of encodings corresponding to the maze’s free cells.

reset(**kwargs)
Give the agents their starting positions.

property scatter_free_agents

If True, then prioritize placing free agents away from the target agent.

property target_agent

The target agent is the place from which to start the maze generation.

class abmarl.sim.gridworld.state.HealthState(agents=None, grid=None, **kwargs)
Manage the state of the agents’ healths.

Every HealthAgent has a health. If that health falls to zero, that agent dies and is remove from the grid.

reset(**kwargs)
Give HealthAgents their starting healths.

We use the agent’s initial health if it exists. Otherwise, we randomly assign a value between 0 and 1.

98 Chapter 7. Abmarl API Specification

Abmarl, Release 0.2.6

7.5.4 Actors

class abmarl.sim.gridworld.actor.ActorBaseComponent(agents=None, grid=None, **kwargs)
Abstract Actor Component class from which all Actor Components will inherit.

abstract property key

The key in the action dictionary.

The action space of all acting agents in the gridworld framework is a dict. We can build up complex action
spaces with multiple components by assigning each component an entry in the action dictionary. Actions
will be a dictionary even if your simulation only has one Actor.

abstract process_action(agent, action_dict, **kwargs)
Process the agent’s action.

Parameters

• agent – The acting agent.

• action_dict – The action dictionary for this agent in this step. The dictionary may have
different entries, each of which will be processed by different Actors.

abstract property supported_agent_type

The type of Agent that this Actor works with.

If an agent is this type, the Actor will add its entry to the agent’s action space and will process actions for
this agent.

class abmarl.sim.gridworld.actor.MoveActor(**kwargs)
Agents can move to nearby squares.

property key

This Actor’s key is “move”.

process_action(agent, action_dict, **kwargs)
The agent can move to nearby squares.

The agent’s new position must be within the grid and the cell-occupation rules must be met.

Parameters

• agent – Move the agent if it is a MovingAgent.

• action_dict – The action dictionary for this agent in this step. If the agent is a Movin-
gAgent, then the action dictionary will contain the “move” entry.

Returns
True if the move is successful, False otherwise.

property supported_agent_type

This Actor works with MovingAgents.

class abmarl.sim.gridworld.actor.CrossMoveActor(**kwargs)
Agents can move up, down, left, right, or stay in place.

grid_action(cross_action)
Grid action converts the cross action to an action in the grid.

0: Stay 1: Move up 2: Move right 3; Move down 4: Move left

7.5. Abmarl GridWorld Simulation Framework 99

Abmarl, Release 0.2.6

property key

This Actors key is “move”.

process_action(agent, action_dict, **kwargs)
The agent can move up, down, left, right, or stay in place.

The agent’s new position must be within the grid and the cell-occupation rules must be met.

Parameters

• agent – Move the agent if it is a MovingAgent.

• action_dict – The action dictionary for this agent in this step. If the agent is a Movin-
gAgent, then the action dictionary will contain the “move” entry.

Returns
True if the move is successful, False otherwise.

property supported_agent_type

This Actor works with MovingAgent, but the move_range parameter is ignored.

class abmarl.sim.gridworld.actor.AttackActorBaseComponent(attack_mapping=None,
stacked_attacks=False, **kwargs)

Abstract class that provides the properties and structure for attack actors.

The agent chooses to attack other agents within its surrounding grid. The derived attack actor interprets and
implements the specific attack. Attacked agents have their health reduced by the attacking agent’s strength and
possibly become inactive if their health falls too low.

property attack_mapping

Dict that dictates which agents the attacking agent can attack.

The dictionary maps the attacking agents’ encodings to a list of encodings that they can attack.

property key

This Actor’s key is “attack”.

process_action(attacking_agent, action_dict, **kwargs)
Process the agent’s attack.

The derived attack actor interprets and implements the action. In general, an attack is successful if there
are attackable agents such that:

1. The attackable agent is active.

2. The attackable agent is positioned at the attacked cell.

3. The attackable agent is valid according to the attack_mapping.

4. The attacking agent’s accuracy is high enough.

Furthemore, a single agent may only be attacked once if stacked_attacks is False. Additional attacks will
be applied on other agents or wasted.

If the attack is successful, then the attacked agent’s health is depleted by the attacking agent’s strength,
possibly resulting in its death.

Parameters

• attacking_agent – The attacking agent.

• action_dict – The agent’s action in this step.

100 Chapter 7. Abmarl API Specification

Abmarl, Release 0.2.6

Returns

Tuple of (bool, list). The first value is False if the agent is not an attacking agent or chose not
to attack; otherwise it is True. The second value is a list of attacked agents, which will be
empty if there was no attack or if the attack failed. Thus, there are three possible outcomes:

1. An attack was not attempted: False, []

2. An attack failed: True, []

3. An attack was successful: True, [non-empty]

property stacked_attacks

Allows an agent to attack the same agent multiple times per step.

When an agent has more than 1 attack per turn, this parameter allows them to use more than one attack on
the same agent. Otherwise, the attacks will be applied to other agents, and if there are not enough attackable
agents, then the extra attacks will be wasted.

property supported_agent_type

This Actor works with AttackingAgents.

class abmarl.sim.gridworld.actor.BinaryAttackActor(attack_mapping=None, stacked_attacks=False,
**kwargs)

Launch attacks in a local grid.

Agents can choose to launch attacks up to their attack count or not to attack at all. For example, if an agent has an
attack count of 3, then it can choose no attack, attack once, attack twice, or attack thrice. The BinaryAttackActor
searches the nearby local grid defined by the agent’s attack range for attackable agents, and randomly chooses
from that set up to the number of attacks issued.

class abmarl.sim.gridworld.actor.EncodingBasedAttackActor(attack_mapping=None,
stacked_attacks=False, **kwargs)

Launch attacks in a local grid based on encoding.

The attacking agent specifies how many attacks it would like to use per available encoding, based on its attack
count and the attack mapping. For example, if the agent can attack encodings 1 and 2 and has up to 3 attacks
available, then it may launch up to 3 attacks on encoding 1 and up to 3 attack on encoding 2. Agents with those
encodings in the surrounding grid are liable to be attacked.

class abmarl.sim.gridworld.actor.SelectiveAttackActor(attack_mapping=None,
stacked_attacks=False, **kwargs)

Launch attacks in a local grid by cell.

The attack is a local grid centered on the agent’s position, and its size depends on the agent’s attack range. Each
cell in the grid has a nonnegative integer up to the agent’s attack count, and it indicates how many attacks to use
on that cell.

class abmarl.sim.gridworld.actor.RestrictedSelectiveAttackActor(attack_mapping=None,
stacked_attacks=False,
**kwargs)

Launch attacks in a local grid by cell.

Agents choose to attack specific cells in the surrounding grid. The agent can attack up to its attack count. It can
choose to attack different cells or the same cell multiple times.

7.5. Abmarl GridWorld Simulation Framework 101

Abmarl, Release 0.2.6

7.5.5 Observers

class abmarl.sim.gridworld.observer.ObserverBaseComponent(agents=None, grid=None, **kwargs)
Abstract Observer Component base from which all observer components will inherit.

abstract get_obs(agent, **kwargs)
Observe the state of the simulation.

Parameters
agent – The agent for which we return an observation.

Returns
This agent’s observation.

abstract property key

The key in the observation dictionary.

The observation space of all observing agents in the gridworld framework is a dict. We can build up complex
observation spaces with multiple components by assigning each component an entry in the observation
dictionary. Observations will be a dictionary even if your simulation only has one Observer.

abstract property supported_agent_type

The type of Agent that this Observer works with.

If an agent is this type, the Observer will add its entry to the agent’s observation space and will produce
observations for this agent.

class abmarl.sim.gridworld.observer.AbsolutePositionObserver(**kwargs)
Agents observe their absolute position.

get_obs(agent, **kwargs)
Agents observe their absolute position.

property key

This Observer’s key is “position”.

property supported_agent_type

This Observer works with ObservingAgents

class abmarl.sim.gridworld.observer.AbsoluteGridObserver(**kwargs)
Observe the agents in the grid according to their actual positions.

This Observer represents agents by their encoding on cells according to their actual positions in the grid. If there
are multiple agents on a single cell with different encodings, only a single randomly chosen encoding will be
observed. To be consistent with other built-in observers, masked cells are indicated as -2. Typially, -1 is reserved
for out of bounds encoding, but because this Observer only reports cells in the grid, we don’t need an out of
bounds distinction. Instead, in order for the observing agent to identify itself distinctly from other agents of the
same encoding, it is reported as a -1.

get_obs(agent, **kwargs)
The agent observes the grid.

The observation may include the agent itself indicated by a -1, other agents indicated by their encodings,
empty space indicated with a 0, and masked cells indicated as -2, which are masked either because they are
too far away or because they are blocked from view by view-blocking agents.

property key

This Observer’s key is “absolute_grid”.

102 Chapter 7. Abmarl API Specification

Abmarl, Release 0.2.6

property supported_agent_type

This Observer work with GridObservingAgents

class abmarl.sim.gridworld.observer.SingleGridObserver(observe_self=True, **kwargs)
Observe a subset of the grid centered on the agent’s position.

The observation is centered around the observing agent’s position. Each agent in the “observation window”
is recorded in the relative cell using its encoding. If there are multiple agents on a single cell with different
encodings, the agent will observe only one of them chosen at random.

get_obs(agent, **kwargs)
The agent observes a sub-grid centered on its position.

The observation may include other agents, empty spaces, out of bounds, and masked cells, which can be
blocked from view by other blocking agents.

Returns
The observation as a dictionary.

property key

This Observer’s key is “grid”.

property observe_self

Agents can observe themselves, which may hide important information if overlapping is important. This
can be turned off by setting observe_self to False.

property supported_agent_type

This Observer works with GridObservingAgents.

class abmarl.sim.gridworld.observer.MultiGridObserver(**kwargs)
Observe a subset of the grid centered on the agent’s position.

The observation is centered around the observing agent’s position. The observing agent sees a stack of obser-
vations, one for each positive encoding, where the number of agents of each encoding is given rather than the
encoding itself. Out of bounds and masked indicators appear in every grid.

get_obs(agent, **kwargs)
The agent observes one or more sub-grids centered on its position.

The observation may include other agents, empty spaces, out of bounds, and masked cells, which can be
blocked from view by other blocking agents. Each grid records the number of agents on a particular cell
correlated to a specific encoding.

Returns
The observation as a dictionary.

property key

This Observer’s key is “grid”.

property supported_agent_type

This Observer works with GridObservingAgents.

7.5. Abmarl GridWorld Simulation Framework 103

Abmarl, Release 0.2.6

7.5.6 Done

class abmarl.sim.gridworld.done.DoneBaseComponent(agents=None, grid=None, **kwargs)
Abstract Done Component class from which all Done Components will inherit.

abstract get_all_done(**kwargs)
Determine if all the agents are done and/or if the simulation is done.

Returns
True if all agents are done or if the simulation is done. Otherwise False.

abstract get_done(agent, **kwargs)
Determine if an agent is done in this step.

Parameters
agent – The agent we are querying.

Returns
True if the agent is done, otherwise False.

class abmarl.sim.gridworld.done.ActiveDone(agents=None, grid=None, **kwargs)
Inactive agents are indicated as done.

get_all_done(**kwargs)
Return True if all agents are inactive. Otherwise, return False.

get_done(agent, **kwargs)
Return True if the agent is inactive. Otherwise, return False.

class abmarl.sim.gridworld.done.OneTeamRemainingDone(agents=None, grid=None, **kwargs)
Inactive agents are indicated as done.

If the only active agents are those who are all of the same encoding, then the simulation ends.

get_all_done(**kwargs)
Return true if all active agents have the same encoding. Otherwise, return false.

class abmarl.sim.gridworld.done.TargetAgentDone(target_mapping=None, **kwargs)
Agents are done when they overlap their target.

The target is prescribed per agent.

get_all_done(**kwargs)
Determine if all the agents are done and/or if the simulation is done.

Returns
True if all agents are done or if the simulation is done. Otherwise False.

get_done(agent, **kwarg)
Determine if an agent is done in this step.

Parameters
agent – The agent we are querying.

Returns
True if the agent is done, otherwise False.

property target_mapping

Maps the agent to its respective target.

Mapping is done via the agents’ ids.

104 Chapter 7. Abmarl API Specification

Abmarl, Release 0.2.6

7.5.7 Wrappers

class abmarl.sim.gridworld.wrapper.ComponentWrapper(agents=None, grid=None, **kwargs)
Wraps GridWorldBaseComponent.

Every wrapper must be able to wrap the respective space and points to/from that space. Agents and Grid are
referenced directly from the wrapped component rather than received as initialization parameters.

property agents

The agent dictionary is directly taken from the wrapped component.

abstract check_space(space)
Verify that the space can be wrapped.

property grid

The grid is directly taken from the wrapped component.

abstract unwrap_point(space, point)
Unwrap a point using a reference space.

Parameters

• space – The reference space for unwrapping the point.

• point – The point to unwrap.

property unwrapped

Fall through all the wrappers and obtain the original, completely unwrapped component.

abstract wrap_point(space, point)
Wrap a point using a reference space.

Parameters

• space – The reference space for wrapping the point.

• point – The point to wrap.

abstract wrap_space(space)
Wrap the space.

Parameters
space – The space to wrap.

abstract property wrapped_component

Get the first-level wrapped component.

class abmarl.sim.gridworld.wrapper.ActorWrapper(component)
Wraps an ActorComponent.

Modify the action space of the agents involved with the Actor, namely the specific actor’s channel. The actions
recieved from the trainer are in the wrapped space, so we need to unwrap them to send them to the actor. This is
the opposite from how we wrap and unwrap observations.

property key

The key is the same as the wrapped actor’s key.

process_action(agent, action_dict, **kwargs)
Unwrap the action and pass it to the wrapped actor to process.

Parameters

7.5. Abmarl GridWorld Simulation Framework 105

Abmarl, Release 0.2.6

• agent – The acting agent.

• action_dict – The action dictionary for this agent in this step. The action in this channel
comes in the wrapped space.

property supported_agent_type

The supported agent type is the same as the wrapped actor’s supported agent type.

property wrapped_component

Get the wrapped actor.

class abmarl.sim.gridworld.wrapper.RavelActionWrapper(component)
Use numpy’s ravel capabilities to convert space and points to Discrete.

check_space(space)
Ensure that the space is of type that can be ravelled to discrete value.

unwrap_point(space, point)
Ravel point to a single discrete value.

wrap_point(space, point)
Unravel a single discrete point to a value in the space.

Recall that the action from the trainer arrives in the wrapped discrete space, so we need to unravel it so that
it is in the unwrapped space before giving it to the actor.

wrap_space(space)
Convert the space into a Discrete space.

class abmarl.sim.gridworld.wrapper.ExclusiveChannelActionWrapper(component)
Ravel Dict space and points with top-level exclusion.

This wrapper works with Dict spaces, where each subspace is to be ravelled independently and then combined
so that that actions are exclusive. The wrapping occurs in two steps. First, we use numpy’s ravel capabilities to
convert each subspace to a Discrete space. Second, we combine the Discrete spaces together in such a way that
imposes exclusivity among the subspaces. The exclusion happens only on the top level, so a Dict nested within
a Dict will be ravelled without exclusion.

check_space(space)
Top level must be Dict and subspaces must be ravel-able.

unwrap_point(space, point)
Ravel point to a single discrete value.

wrap_point(space, point)
Unravel a single discrete point to a value in the space.

Recall that the action from the trainer arrives in the wrapped discrete space, so we need to unravel it so that
it is in the unwrapped space before giving it to the actor.

wrap_space(space)
Convert the space into a Discrete space.

The wrapping occurs in two steps. First, we use numpy’s ravel capabilities to convert each subspace to
a Discrete space. Second, we combine the Discrete spaces together, imposing that actions among the
subspaces are exclusive.

106 Chapter 7. Abmarl API Specification

Abmarl, Release 0.2.6

7.6 Abmarl Trainers

class abmarl.trainers.MultiPolicyTrainer(sim=None, policies=None, policy_mapping_fn=None,
**kwargs)

Train policies with data generated by agents interacting in a simulation.

compute_actions(obs)
Compute actions for agents in the observation.

Forwards the observations to the respective policy for each agent that reports an observation.

Parameters
obs – an observation dictionary, where the keys are the agents reporting from the sim and the
values are the observations.

Returns

An action dictionary where the keys are the agents from the observation
and the values are the actions generated from each agent’s policy.

generate_episode(horizon=200, render=False, **kwargs)
Generate an episode of data.

The fundamental data object is a SAR, a (state, action, reward) tuple. We restart the sim, generating initial
observations (states) for agents reporting from the sim. Then we use the compute_action function to gen-
erate actions for agents who report an observation. Those actions are given to the sim, which steps forward
and generates rewards and new observations for reporting agents. This loop continues until the simulation
is done or we hit the horizon.

Parameters

• horizon – The maximum number of steps per epsidoe. The episode may finish early, but
it will not progress further than this number of steps.

• render – Renders the simulation. This should be False when training, and can be True
when debugging or evaluating in post-processing.

Returns

Four dictionaries, one for observations, another for actions,
another for rewards, and another for dones. This makes the SAR sequence and provides
additional information on the done condition since some algorithms need this. The data is
organized by agent_id, so you would call {observations, actions, rewards}[agent_id][i] in
order to extract the ith SAR for an agent. NOTE: In multiagent simulations, the number of
SARs may differ for each agent.

property policies

A dictionary that maps the policy id’s to a policy object.

property policy_mapping_fn

A function that takes an agent’s id as input and outputs its corresponding policy id.

property sim

The SimulationManager.

abstract train(iterations=10000, **kwargs)
Train the policy objects using generated data.

This function is abstract and should be implemented by the algorithm.

7.6. Abmarl Trainers 107

Abmarl, Release 0.2.6

Parameters

• iterations – The number of training iterations.

• **kwargs – Any additional parameter your algorithm may need.

class abmarl.trainers.SinglePolicyTrainer(sim=None, policy=None, **kwargs)
Train a single policy with data generated by agents interacting in a simulation.

property policies

A dictionary that maps the policy id’s to a policy object.

property policy

The policy to train.

property policy_mapping_fn

Return function always returns “policy”, which is the name we give the policy.

class abmarl.trainers.monte_carlo.OnPolicyMonteCarloTrainer(sim=None, policy=None, **kwargs)

train(iterations=10000, gamma=0.9, **kwargs)
Implements on-policy monte carlo.

class abmarl.trainers.DebugTrainer(policies=None, name=None, output_dir=None, **kwargs)
Debug the training setup.

The DebugTrainer generates episodes using the simulation and policies. Rather than training those policies, The
DebugTrainer simply dumps the observations, actions, rewards, and dones to disk.

The DebugTrainer can be run without policies. In this case, it generates a random policy for each agent. This
effectively debug the simulation without having to debug the policy setup too.

property name

The name of the experiment.

If name is not specified, then we just use “DEBUG”. We append the name with the date and time.

property output_dir

The directory for where to dump the episode data.

If the output dir is not specified, then we use “~/abmarl_results/”. We append the experiment name to the
end of the directory.

train(iterations=5, render=False, **kwargs)
Generate episodes and write write to disk.

Nothing is trained here. We just generate and dump the data and visualize the simulation if requested.

Parameters

• iterations – The number of episodes to generate.

• render – Set to True to visualize the simulation.

108 Chapter 7. Abmarl API Specification

CHAPTER

EIGHT

CITATION

Abmarl has been published in the Journal of Open Source Software. It can be cited using the following bibtex entry:

@article{Rusu2021,
doi = {10.21105/joss.03424},
url = {https://doi.org/10.21105/joss.03424},
year = {2021},
publisher = {The Open Journal},
volume = {6},
number = {64},
pages = {3424},
author = {Edward Rusu and Ruben Glatt},
title = {Abmarl: Connecting Agent-Based Simulations with Multi-Agent Reinforcement␣

→˓Learning},
journal = {Journal of Open Source Software}

}

109

https://joss.theoj.org/papers/10.21105/joss.03424

Abmarl, Release 0.2.6

110 Chapter 8. Citation

INDEX

A
AbsoluteGridObserver (class in ab-

marl.sim.gridworld.observer), 102
AbsolutePositionObserver (class in ab-

marl.sim.gridworld.observer), 102
ActingAgent (class in abmarl.sim), 85
action_space (abmarl.external.GymWrapper prop-

erty), 91
action_space (abmarl.sim.ActingAgent property), 85
action_spec() (abmarl.external.OpenSpielWrapper

method), 92
active (abmarl.sim.PrincipleAgent property), 85
ActiveDone (class in abmarl.sim.gridworld.done), 104
ActorBaseComponent (class in ab-

marl.sim.gridworld.actor), 99
ActorWrapper (class in abmarl.sim.gridworld.wrapper),

105
Agent (class in abmarl.sim), 86
AgentBasedSimulation (class in abmarl.sim), 86
agents (abmarl.managers.SimulationManager at-

tribute), 87
agents (abmarl.sim.AgentBasedSimulation property), 86
agents (abmarl.sim.gridworld.base.GridWorldBaseComponent

property), 94
agents (abmarl.sim.gridworld.wrapper.ComponentWrapper

property), 105
AllStepManager (class in abmarl.managers), 88
attack_accuracy (ab-

marl.sim.gridworld.agent.AttackingAgent
property), 97

attack_count (abmarl.sim.gridworld.agent.AttackingAgent
property), 97

attack_mapping (abmarl.sim.gridworld.actor.AttackActorBaseComponent
property), 100

attack_range (abmarl.sim.gridworld.agent.AttackingAgent
property), 97

attack_strength (ab-
marl.sim.gridworld.agent.AttackingAgent
property), 97

AttackActorBaseComponent (class in ab-
marl.sim.gridworld.actor), 100

AttackingAgent (class in abmarl.sim.gridworld.agent),

97

B
barrier_encodings (ab-

marl.sim.gridworld.state.MazePlacementState
property), 98

BinaryAttackActor (class in ab-
marl.sim.gridworld.actor), 101

blocking (abmarl.sim.gridworld.agent.GridWorldAgent
property), 96

build_sim() (abmarl.sim.gridworld.base.GridWorldSimulation
class method), 93

build_sim_from_array() (ab-
marl.sim.gridworld.base.GridWorldSimulation
class method), 93

build_sim_from_file() (ab-
marl.sim.gridworld.base.GridWorldSimulation
class method), 93

build_sim_from_grid() (ab-
marl.sim.gridworld.base.GridWorldSimulation
class method), 94

C
check_space() (abmarl.sim.gridworld.wrapper.ComponentWrapper

method), 105
check_space() (abmarl.sim.gridworld.wrapper.ExclusiveChannelActionWrapper

method), 106
check_space() (abmarl.sim.gridworld.wrapper.RavelActionWrapper

method), 106
cluster_barriers (ab-

marl.sim.gridworld.state.MazePlacementState
property), 98

cols (abmarl.sim.gridworld.base.GridWorldBaseComponent
property), 94

cols (abmarl.sim.gridworld.grid.Grid property), 95
ComponentWrapper (class in ab-

marl.sim.gridworld.wrapper), 105
compute_actions() (ab-

marl.trainers.MultiPolicyTrainer method),
107

configured (abmarl.sim.ActingAgent property), 86

111

Abmarl, Release 0.2.6

configured (abmarl.sim.gridworld.agent.AttackingAgent
property), 97

configured (abmarl.sim.gridworld.agent.GridObservingAgent
property), 96

configured (abmarl.sim.gridworld.agent.GridWorldAgent
property), 96

configured (abmarl.sim.gridworld.agent.MovingAgent
property), 96

configured (abmarl.sim.ObservingAgent property), 85
configured (abmarl.sim.PrincipleAgent property), 85
CrossMoveActor (class in abmarl.sim.gridworld.actor),

99
current_player (abmarl.external.OpenSpielWrapper

property), 92

D
DebugTrainer (class in abmarl.trainers), 108
discounts (abmarl.external.OpenSpielWrapper prop-

erty), 92
done_agents (abmarl.managers.SimulationManager at-

tribute), 87
DoneBaseComponent (class in ab-

marl.sim.gridworld.done), 104
DynamicOrderManager (class in abmarl.managers), 88
DynamicOrderSimulation (class in abmarl.sim), 86

E
encoding (abmarl.sim.gridworld.agent.GridWorldAgent

property), 96
EncodingBasedAttackActor (class in ab-

marl.sim.gridworld.actor), 101
ExclusiveChannelActionWrapper (class in ab-

marl.sim.gridworld.wrapper), 106

F
finalize() (abmarl.sim.ActingAgent method), 86
finalize() (abmarl.sim.AgentBasedSimulation

method), 86
finalize() (abmarl.sim.ObservingAgent method), 85
finalize() (abmarl.sim.PrincipleAgent method), 85
FlattenWrapper (class in abmarl.sim.wrappers), 88
free_encodings (abmarl.sim.gridworld.state.MazePlacementState

property), 98

G
generate_episode() (ab-

marl.trainers.MultiPolicyTrainer method),
107

get_all_done() (abmarl.sim.AgentBasedSimulation
method), 86

get_all_done() (abmarl.sim.gridworld.done.ActiveDone
method), 104

get_all_done() (abmarl.sim.gridworld.done.DoneBaseComponent
method), 104

get_all_done() (abmarl.sim.gridworld.done.OneTeamRemainingDone
method), 104

get_all_done() (abmarl.sim.gridworld.done.TargetAgentDone
method), 104

get_done() (abmarl.sim.AgentBasedSimulation
method), 86

get_done() (abmarl.sim.gridworld.done.ActiveDone
method), 104

get_done() (abmarl.sim.gridworld.done.DoneBaseComponent
method), 104

get_done() (abmarl.sim.gridworld.done.TargetAgentDone
method), 104

get_done() (abmarl.sim.wrappers.SuperAgentWrapper
method), 89

get_info() (abmarl.sim.AgentBasedSimulation
method), 86

get_info() (abmarl.sim.wrappers.SuperAgentWrapper
method), 89

get_legal_actions() (ab-
marl.external.OpenSpielWrapper method),
92

get_obs() (abmarl.sim.AgentBasedSimulation method),
86

get_obs() (abmarl.sim.gridworld.observer.AbsoluteGridObserver
method), 102

get_obs() (abmarl.sim.gridworld.observer.AbsolutePositionObserver
method), 102

get_obs() (abmarl.sim.gridworld.observer.MultiGridObserver
method), 103

get_obs() (abmarl.sim.gridworld.observer.ObserverBaseComponent
method), 102

get_obs() (abmarl.sim.gridworld.observer.SingleGridObserver
method), 103

get_obs() (abmarl.sim.wrappers.SuperAgentWrapper
method), 90

get_reward() (abmarl.sim.AgentBasedSimulation
method), 86

get_reward() (abmarl.sim.wrappers.SuperAgentWrapper
method), 90

grid (abmarl.sim.gridworld.base.GridWorldBaseComponent
property), 94

grid (abmarl.sim.gridworld.wrapper.ComponentWrapper
property), 105

Grid (class in abmarl.sim.gridworld.grid), 95
grid_action() (abmarl.sim.gridworld.actor.CrossMoveActor

method), 99
GridObservingAgent (class in ab-

marl.sim.gridworld.agent), 96
GridWorldAgent (class in abmarl.sim.gridworld.agent),

96
GridWorldBaseComponent (class in ab-

marl.sim.gridworld.base), 94
GridWorldSimulation (class in ab-

marl.sim.gridworld.base), 93

112 Index

Abmarl, Release 0.2.6

GymWrapper (class in abmarl.external), 91

H
health (abmarl.sim.gridworld.agent.HealthAgent prop-

erty), 97
HealthAgent (class in abmarl.sim.gridworld.agent), 97
HealthState (class in abmarl.sim.gridworld.state), 98

I
id (abmarl.sim.PrincipleAgent property), 85
initial_health (abmarl.sim.gridworld.agent.HealthAgent

property), 97
initial_position (ab-

marl.sim.gridworld.agent.GridWorldAgent
property), 96

is_turn_based (abmarl.external.OpenSpielWrapper
property), 92

K
key (abmarl.sim.gridworld.actor.ActorBaseComponent

property), 99
key (abmarl.sim.gridworld.actor.AttackActorBaseComponent

property), 100
key (abmarl.sim.gridworld.actor.CrossMoveActor prop-

erty), 99
key (abmarl.sim.gridworld.actor.MoveActor property),

99
key (abmarl.sim.gridworld.observer.AbsoluteGridObserver

property), 102
key (abmarl.sim.gridworld.observer.AbsolutePositionObserver

property), 102
key (abmarl.sim.gridworld.observer.MultiGridObserver

property), 103
key (abmarl.sim.gridworld.observer.ObserverBaseComponent

property), 102
key (abmarl.sim.gridworld.observer.SingleGridObserver

property), 103
key (abmarl.sim.gridworld.wrapper.ActorWrapper prop-

erty), 105

M
MazePlacementState (class in ab-

marl.sim.gridworld.state), 98
move_range (abmarl.sim.gridworld.agent.MovingAgent

property), 96
MoveActor (class in abmarl.sim.gridworld.actor), 99
MovingAgent (class in abmarl.sim.gridworld.agent), 96
MultiAgentWrapper (class in abmarl.external), 91
MultiGridObserver (class in ab-

marl.sim.gridworld.observer), 103
MultiPolicyTrainer (class in abmarl.trainers), 107

N
name (abmarl.trainers.DebugTrainer property), 108

next_agent (abmarl.sim.DynamicOrderSimulation
property), 87

no_overlap_at_reset (ab-
marl.sim.gridworld.state.PositionState prop-
erty), 97

null_action (abmarl.sim.ActingAgent property), 86
null_observation (abmarl.sim.ObservingAgent prop-

erty), 85
num_players (abmarl.external.OpenSpielWrapper prop-

erty), 92

O
observation_space (abmarl.external.GymWrapper

property), 91
observation_space (abmarl.sim.ObservingAgent

property), 85
observation_spec() (ab-

marl.external.OpenSpielWrapper method),
92

observe_self (abmarl.sim.gridworld.observer.SingleGridObserver
property), 103

ObserverBaseComponent (class in ab-
marl.sim.gridworld.observer), 102

ObservingAgent (class in abmarl.sim), 85
OneTeamRemainingDone (class in ab-

marl.sim.gridworld.done), 104
OnPolicyMonteCarloTrainer (class in ab-

marl.trainers.monte_carlo), 108
OpenSpielWrapper (class in abmarl.external), 91
output_dir (abmarl.trainers.DebugTrainer property),

108
overlapping (abmarl.sim.gridworld.grid.Grid prop-

erty), 95

P
place() (abmarl.sim.gridworld.grid.Grid method), 95
policies (abmarl.trainers.MultiPolicyTrainer property),

107
policies (abmarl.trainers.SinglePolicyTrainer prop-

erty), 108
policy (abmarl.trainers.SinglePolicyTrainer property),

108
policy_mapping_fn (ab-

marl.trainers.MultiPolicyTrainer property),
107

policy_mapping_fn (ab-
marl.trainers.SinglePolicyTrainer property),
108

position (abmarl.sim.gridworld.agent.GridWorldAgent
property), 96

PositionState (class in abmarl.sim.gridworld.state),
97

PrincipleAgent (class in abmarl.sim), 85

Index 113

Abmarl, Release 0.2.6

process_action() (ab-
marl.sim.gridworld.actor.ActorBaseComponent
method), 99

process_action() (ab-
marl.sim.gridworld.actor.AttackActorBaseComponent
method), 100

process_action() (ab-
marl.sim.gridworld.actor.CrossMoveActor
method), 100

process_action() (ab-
marl.sim.gridworld.actor.MoveActor method),
99

process_action() (ab-
marl.sim.gridworld.wrapper.ActorWrapper
method), 105

Q
query() (abmarl.sim.gridworld.grid.Grid method), 95

R
randomize_action_input (ab-

marl.managers.AllStepManager property),
88

RavelActionWrapper (class in ab-
marl.sim.gridworld.wrapper), 106

RavelDiscreteWrapper (class in ab-
marl.sim.wrappers), 88

ravelled_positions_available (ab-
marl.sim.gridworld.state.PositionState prop-
erty), 97

remove() (abmarl.sim.gridworld.grid.Grid method), 95
render() (abmarl.external.GymWrapper method), 91
render() (abmarl.external.MultiAgentWrapper

method), 91
render() (abmarl.managers.SimulationManager

method), 87
render() (abmarl.sim.AgentBasedSimulation method),

86
render() (abmarl.sim.gridworld.base.GridWorldSimulation

method), 94
render_color (abmarl.sim.gridworld.agent.GridWorldAgent

property), 96
render_shape (abmarl.sim.gridworld.agent.GridWorldAgent

property), 96
reset() (abmarl.external.GymWrapper method), 91
reset() (abmarl.external.MultiAgentWrapper method),

91
reset() (abmarl.external.OpenSpielWrapper method),

92
reset() (abmarl.managers.AllStepManager method), 88
reset() (abmarl.managers.DynamicOrderManager

method), 88
reset() (abmarl.managers.SimulationManager

method), 87

reset() (abmarl.managers.TurnBasedManager
method), 87

reset() (abmarl.sim.AgentBasedSimulation method), 86
reset() (abmarl.sim.gridworld.grid.Grid method), 96
reset() (abmarl.sim.gridworld.state.HealthState

method), 98
reset() (abmarl.sim.gridworld.state.MazePlacementState

method), 98
reset() (abmarl.sim.gridworld.state.PositionState

method), 98
reset() (abmarl.sim.gridworld.state.StateBaseComponent

method), 97
reset() (abmarl.sim.wrappers.SuperAgentWrapper

method), 90
RestrictedSelectiveAttackActor (class in ab-

marl.sim.gridworld.actor), 101
rows (abmarl.sim.gridworld.base.GridWorldBaseComponent

property), 94
rows (abmarl.sim.gridworld.grid.Grid property), 96

S
scatter_free_agents (ab-

marl.sim.gridworld.state.MazePlacementState
property), 98

seed (abmarl.sim.PrincipleAgent property), 85
SelectiveAttackActor (class in ab-

marl.sim.gridworld.actor), 101
sim (abmarl.external.MultiAgentWrapper attribute), 91
sim (abmarl.managers.SimulationManager attribute), 87
sim (abmarl.trainers.MultiPolicyTrainer property), 107
SimulationManager (class in abmarl.managers), 87
SingleGridObserver (class in ab-

marl.sim.gridworld.observer), 103
SinglePolicyTrainer (class in abmarl.trainers), 108
stacked_attacks (ab-

marl.sim.gridworld.actor.AttackActorBaseComponent
property), 101

StateBaseComponent (class in ab-
marl.sim.gridworld.state), 97

step() (abmarl.external.GymWrapper method), 91
step() (abmarl.external.MultiAgentWrapper method),

91
step() (abmarl.external.OpenSpielWrapper method), 92
step() (abmarl.managers.AllStepManager method), 88
step() (abmarl.managers.DynamicOrderManager

method), 88
step() (abmarl.managers.SimulationManager method),

87
step() (abmarl.managers.TurnBasedManager method),

87
step() (abmarl.sim.AgentBasedSimulation method), 86
step() (abmarl.sim.wrappers.SuperAgentWrapper

method), 90

114 Index

Abmarl, Release 0.2.6

super_agent_mapping (ab-
marl.sim.wrappers.SuperAgentWrapper
property), 90

SuperAgentWrapper (class in abmarl.sim.wrappers), 89
supported_agent_type (ab-

marl.sim.gridworld.actor.ActorBaseComponent
property), 99

supported_agent_type (ab-
marl.sim.gridworld.actor.AttackActorBaseComponent
property), 101

supported_agent_type (ab-
marl.sim.gridworld.actor.CrossMoveActor
property), 100

supported_agent_type (ab-
marl.sim.gridworld.actor.MoveActor property),
99

supported_agent_type (ab-
marl.sim.gridworld.observer.AbsoluteGridObserver
property), 102

supported_agent_type (ab-
marl.sim.gridworld.observer.AbsolutePositionObserver
property), 102

supported_agent_type (ab-
marl.sim.gridworld.observer.MultiGridObserver
property), 103

supported_agent_type (ab-
marl.sim.gridworld.observer.ObserverBaseComponent
property), 102

supported_agent_type (ab-
marl.sim.gridworld.observer.SingleGridObserver
property), 103

supported_agent_type (ab-
marl.sim.gridworld.wrapper.ActorWrapper
property), 106

T
target_agent (abmarl.sim.gridworld.state.MazePlacementState

property), 98
target_mapping (abmarl.sim.gridworld.done.TargetAgentDone

property), 104
TargetAgentDone (class in abmarl.sim.gridworld.done),

104
train() (abmarl.trainers.DebugTrainer method), 108
train() (abmarl.trainers.monte_carlo.OnPolicyMonteCarloTrainer

method), 108
train() (abmarl.trainers.MultiPolicyTrainer method),

107
TurnBasedManager (class in abmarl.managers), 87

U
unwrap_action() (ab-

marl.sim.wrappers.FlattenWrapper method),
89

unwrap_action() (ab-
marl.sim.wrappers.RavelDiscreteWrapper
method), 88

unwrap_observation() (ab-
marl.sim.wrappers.FlattenWrapper method),
89

unwrap_observation() (ab-
marl.sim.wrappers.RavelDiscreteWrapper
method), 88

unwrap_point() (abmarl.sim.gridworld.wrapper.ComponentWrapper
method), 105

unwrap_point() (abmarl.sim.gridworld.wrapper.ExclusiveChannelActionWrapper
method), 106

unwrap_point() (abmarl.sim.gridworld.wrapper.RavelActionWrapper
method), 106

unwrapped (abmarl.external.GymWrapper property), 91
unwrapped (abmarl.sim.gridworld.wrapper.ComponentWrapper

property), 105

V
view_range (abmarl.sim.gridworld.agent.GridObservingAgent

property), 96

W
wrap_action() (abmarl.sim.wrappers.FlattenWrapper

method), 89
wrap_action() (abmarl.sim.wrappers.RavelDiscreteWrapper

method), 88
wrap_observation() (ab-

marl.sim.wrappers.FlattenWrapper method),
89

wrap_observation() (ab-
marl.sim.wrappers.RavelDiscreteWrapper
method), 88

wrap_point() (abmarl.sim.gridworld.wrapper.ComponentWrapper
method), 105

wrap_point() (abmarl.sim.gridworld.wrapper.ExclusiveChannelActionWrapper
method), 106

wrap_point() (abmarl.sim.gridworld.wrapper.RavelActionWrapper
method), 106

wrap_space() (abmarl.sim.gridworld.wrapper.ComponentWrapper
method), 105

wrap_space() (abmarl.sim.gridworld.wrapper.ExclusiveChannelActionWrapper
method), 106

wrap_space() (abmarl.sim.gridworld.wrapper.RavelActionWrapper
method), 106

wrapped_component (ab-
marl.sim.gridworld.wrapper.ActorWrapper
property), 106

wrapped_component (ab-
marl.sim.gridworld.wrapper.ComponentWrapper
property), 105

Index 115

	What’s New in Abmarl
	Absolute Grid Observer
	Maze Placement State
	Building a Gridworld Simulation
	Miscellaneous

	Design
	Creating Agents and Simulations
	Agent
	Agent Based Simulation
	Simulation Managers
	Wrappers
	Ravel Discrete Wrapper
	Flatten Wrapper
	Super Agent Wrapper

	External Integration
	OpenAI Gym
	RLlib MultiAgentEnv
	OpenSpiel Environment

	Training with an Experiment Configuration
	Experiment Parameters
	Command Line

	Debugging
	Visualizing
	Analyzing
	Trainer Prototype

	GridWorld Simulation Framework
	Framework Design
	Agent
	Grid
	State
	Actor
	Observer
	Done
	Component Wrappers
	Actor Wrappers

	Building the Simulation
	Build Sim
	Build Sim From Grid
	Build Sim From Array
	Build Sim From File

	Built-in Features
	Position
	Maze Placement State

	Movement
	Cross Move Actor
	Absolute Position Observer
	Absolute Grid Observer
	Single Grid Observer
	Multi Grid Observer
	Blocking

	Health
	Attacking
	Binary Attack Actor
	Encoding Based Attack Actor
	Selective Attack Actor
	Restricted Selective Attack Actor

	Active Done
	One Team Remaining Done
	Target Agent Done
	RavelActionWrapper
	Exclusive Channel Action Wrapper

	Featured Use Cases
	Emergent Collaborative and Competitive Behavior
	Single Agent Foraging
	When it can see resources
	When it cannot see resources

	Multiple Agents Foraging
	Cover and explore
	Breaking the pattern

	Introducing Hunters
	First Scenario
	Second scenario

	Installation
	User Installation
	Developer Installation

	Full Tutorials
	MultiCorridor
	Creating the MultiCorridor Simulation
	The Agents in the Simulation
	Resetting the Simulation
	Stepping the Simulation
	Querying Simulation State
	Rendering for Visualization

	Training the MultiCorridor Simulation
	Simulation Setup
	Policy Setup
	Experiment Parameters
	Command Line interface
	Visualizing the Trained Behaviors

	Extra Challenges

	GridWorld
	Team Battle
	Extra Challenges

	Maze Navigation
	Extra Challenges

	Communication Blocking
	Using built-in features
	Creating our own communication components
	Building and running the simulation
	Extra Challenges

	Abmarl API Specification
	Abmarl Simulations
	Abmarl Simulation Managers
	Abmarl Wrappers
	Abmarl External Integration
	Abmarl GridWorld Simulation Framework
	Base
	Agents
	State
	Actors
	Observers
	Done
	Wrappers

	Abmarl Trainers

	Citation
	Index

