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Abmarl is a package for developing Agent-Based Simulations and training them with MultiAgent Reinforcement Learn-
ing (MARL). We provide an intuitive command line interface for engaging with the full workflow of MARL exper-
imentation: training, visualizing, and analyzing agent behavior. We define an Agent-Based Simulation Interface and
Simulation Manager, which control which agents interact with the simulation at each step. We support integration
with popular reinforcement learning simulation interfaces, including gym.Env and MultiAgentEnv. We define our own
GridWorld Simulation Framework for creating custom grid-based Agent Based Simulations.

Abmarl leverages RLIib’s framework for reinforcement learning and extends it to more easily support custom simula-
tions, algorithms, and policies. We enable researchers to rapidly prototype MARL experiments and simulation design
and lower the barrier for pre-existing projects to prototype RL as a potential solution.

CONTENTS 1
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CHAPTER
ONE

DESIGN

A reinforcement learning experiment in Abmarl contains two interacting components: a Simulation and a Trainer.

The Simulation contains agent(s) who can observe the state (or a substate) of the Simulation and whose actions af-
fect the state of the simulation. The simulation is discrete in time, and at each time step agents can provide actions.
The simulation also produces rewards for each agent that the Trainer can use to train optimal behaviors. The Agent-
Simulation interaction produces state-action-reward tuples (SARs), which can be collected in rollout fragments and
used to optimize agent behaviors.

The Trainer contains policies that map agents’ observations to actions. Policies are one-to-many with agents, meaning
that there can be multiple agents using the same policy. Policies may be heuristic (i.e. coded by the researcher) or
trainable by the RL algorithm.

In Abmarl, the Simulation and Trainer are specified in a single Python configuration file. Once these components are
set up, they are passed as parameters to RLIib’s tune command, which will launch the RLIib application and begin the
training process. The training process will save checkpoints to an output directory, from which the user can visualize
and analyze results. The following diagram demonstrates this workflow.

—— / Output Directory \ __—

< 4

Fig. 1: Abmarl’s usage workflow. An experiment configuration is used to train agents’ behaviors. The policies and
simulation are saved to an output directory. Behaviors can then be analyzed or visualized from the output directory.
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1.1 Creating Agents and Simulations

Abmarl provides three interfaces for setting up an agent-based simulations.

1.1.1 Agent

First, we have Agents. An agent is an object with an observation and action space. Many practitioners may be ac-
customed to gym.Env’s interface, which defines the observation and action space for the simulation. However, in
heterogeneous multiagent settings, each agent can have different spaces; thus we assign these spaces to the agents and
not the simulation.

An agent can be created like so:

from gym.spaces import Discrete, Box

from abmarl.sim import Agent

agent = Agent(
id="agent®"',
observation_space=Box(-1, 1, (2,)),
action_space=Discrete(3)

At this level, the Agent is basically a dataclass. We have left it open for our users to extend its features as they see fit.

1.1.2 Agent Based Simulation

Next, we define an Agent Based Simulation, or ABS for short, with the ususal reset and step functions that we are
used to seeing in RL simulations. These functions, however, do not return anything; the state information must be
obtained from the getters: get_obs, get_reward, get_done, get_all_done, and get_info. The getters take an
agent’s id as input and return the respective information from the simulation’s state. The ABS also contains a dictionary
of agents that “live” in the simulation.

An Agent Based Simulation can be created and used like so:

from abmarl.sim import Agent, AgentBasedSimulation
class MySim(AgentBasedSimulation):
def __init__(self, agents=None, **kwargs):
self.agents = agents
. # Implement the ABS interface

# Create a dictionary of agents

agents = {f'agent{i}': Agent(id=f'agent{i}', ...) for i in range(10)}
# Create the ABS with the agents

sim = MySim(agents=agents)

sim.reset()

# Get the observations

obs = {agent.id: sim.get_obs(agent.id) for agent in agents.values()}
# Take some random actions

sim.step({agent.id: agent.action_space.sample() for agent in agents.values()})
# See the reward for agent3

print(sim.get_reward('agent3'))

4 Chapter 1. Design
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Warning: Implementations of AgentBasedSimulation should call finalize at the end of its __init__. Finalize
ensures that all agents are configured and ready to be used for training.

Note: Instead of treating agents as dataclasses, we could have included the relevant information in the Agent Based
Simulation with various dictionaries. For example, we could have action_spaces and observation_spaces that
maps agents’ ids to their action spaces and observation spaces, respectively. In Abmarl, we favor the dataclass approach
and use it throughout the package and documentation.

1.1.3 Simulation Managers

The Agent Based Simulation interface does not specify an ordering for agents’ interactions with the simulation. This is
left open to give our users maximal flexibility. However, in order to interace with RLIib’s learning library, we provide
a Simulation Manager which specifies the output from reset and step as RLIib expects it. Specifically,

1. Agents that appear in the output dictionary will provide actions at the next step.
2. Agents that are done on this step will not provide actions on the next step.

Simulation managers are open-ended requiring only reset and step with output described above. For convenience,
we have provided two managers: Turn Based, which implements turn-based games; and All Step, which has every
non-done agent provide actions at each step.

Simluation Managers “wrap” simulations, and they can be used like so:

from abmarl.managers import AllStepManager
from abmarl.sim import AgentBasedSimulation, Agent
class MySim(AgentBasedSimulation):

. # Define some simulation

# Instatiate the simulation

sim = MySim(agents=...)

# Wrap the simulation with the simulation manager

sim = AllStepManager(sim)

# Get the observations for all agents

obs = sim.reset()

# Get simulation state for all non-done agents, regardless of which agents
# actually contribute an action.

obs, rewards, dones, infos = sim.step({'agent®': 4, 'agent2': [-1, 1]})

1.1.4 External Integration

In order to train agents in a Simulation Manager using RLI1ib, we must wrap the simulation with either a GymWrapper for
single-agent simulations (i.e. only a single entry in the agents dict) or a MultiAgentWrapper for multiagent simulations.

1.1. Creating Agents and Simulations 5
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1.2 Training with an Experiment Configuration

In order to run experiments, we must define a configuration file that specifies Simulation and Trainer parameters. Here
is the configuration file from the Corridor tutorial that demonstrates a simple corridor simulation with multiple agents.

# Import the MultiCorridor ABS, a simulation manager, and the multiagent
# wrapper needed to connect to RL1ib's trainers

from abmarl.sim.corridor import MultiCorridor

from abmarl.managers import TurnBasedManager

from abmarl.external import MultiAgentWrapper

# Create and wrap the simulation

# NOTE: The agents in "MultiCorridor® are all homogeneous, so this simulation
# just creates and stores the agents itself.

sim = MultiAgentWrapper (TurnBasedManager (MultiCorridor()))

# Register the simulation with RL1ib

sim_name = "MultiCorridor"

from ray.tune.registry import register_env
register_env(sim_name, lambda sim_config: sim)

# Set up the policies. In this experiment, all agents are homogeneous,
# so we just use a single shared policy.
ref_agent = sim.unwrapped.agents['agent0']
policies = {
"corridor': (None, ref_agent.observation_space, ref_agent.action_space, {})
}
def policy_mapping_fn(agent_id):
return 'corridor'

# Experiment parameters
params = {
'experiment': {
"title': f'{sim_name}',
'sim_creator': lambda config=None: sim,
s
'ray_tune': {
'run_or_experiment': 'PG',
'checkpoint_freq': 50,
'checkpoint_at_end': True,
'stop': {
'episodes_total': 2000,
1
'verbose': 2,
'config': {
# --- simulation ---
'env': sim_name,
'horizon': 200,
'env_config': {},
# --- Multiagent ---
'multiagent': {
'policies': policies,
'policy_mapping_fn': policy_mapping_1£n,

(continues on next page)
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(continued from previous page)

}

# --- Parallelism ---
"num_workers": 7,
"num_envs_per_worker": 1,

3,

Warning: The simulation must be a Simulation Manager or an External Wrapper as described above.

Note: This example has num_workers set to 7 for a computer with 8 CPU’s. You may need to adjust this for your
computer to be <cpu count> - 1.

1.2.1 Experiment Parameters

The strucutre of the parameters dictionary is very important. It must have an experiment key which contains both the
title of the experiment and the sim_creator function. This function should receive a config and, if appropriate, pass
it to the simulation constructor. In the example configuration above, we just retrun the already-configured simulation.
Without the title and simulation creator, Abmarl may not behave as expected.

The experiment parameters also contains information that will be passed directly to RLIib via the ray_tune parameter.
See RLIib’s documentation for a list of common configuration parameters.

1.2.2 Command Line

With the configuration file complete, we can utilize the command line interface to train our agents. We simply type
abmarl train multi_corridor_example.py, where multi_corridor_example.py is the name of our configuration
file. This will launch Abmarl, which will process the file and launch RLIib according to the specified parameters.
This particular example should take 1-10 minutes to train, depending on your compute capabilities. You can view the
performance in real time in tensorboard with tensorboard --logdir ~/abmarl_results.

Note: By default, the “base” of the output directory is the home directory, and Abmarl will create the abmarl_results
directory there. The base directory can by configured in the params under ray_tune using the local_dir parameter.
This value should be a full path. For example, 'local_dir': '/usr/local/scratch'.

1.3 Debugging

It may be useful to trial run a simulation after setting up a configuration file to ensure that the simulation mechanics work
as expected. Abmarl’s debug command will run the simulation with random actions and create an output directory,
wherein it will copy the configuration file and output the observations, actions, rewards, and done conditions for each
step. The data from each episode will be logged to its own file in the output directory. For example, the command

abmarl debug multi_corridor_example.py -n 2 -s 20 --render

1.3. Debugging 7
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will run the MultiCorridor simulation with random actions and output log files to the directory it creates for 2 episodes
and a horizon of 20, as well as render each step in each episode.

1.4 Visualizing

We can visualize the agents’ learned behavior with the visualize command, which takes as argument the output
directory from the training session stored in ~/abmarl_results. For example, the command

abmarl visualize ~/abmarl_results/MultiCorridor-2020-08-25_09-30/ -n 5 --record

will load the experiment (notice that the directory name is the experiment title from the configuration file appended
with a timestamp) and display an animation of 5 episodes. The --record flag will save the animations as .mp4 videos
in the training directory.

By default, each episode has a horizon of 200 steps (i.e. it will run for up to 200 steps). It may end earlier depending
on the done condition from the simulation. You can control the horizon with -s or --steps-per-episode when
running the visualize command.

1.5 Analyzing

The simulation and trainer can also be loaded into an analysis script for post-processing via the analyze command.
The analysis script must implement the following run function. Below is an example that can serve as a starting point.

# Load the simulation and the trainer from the experiment as objects

def run(sim, trainer):
Analyze the behavior of your trained policies using the simulation and trainer
from your RL experiment.

Args:
sim:
Simulation Manager object from the experiment.
trainer:
Trainer that computes actions using the trained policies.
# Run the simulation with actions chosen from the trained policies
policy_agent_mapping = trainer.config['multiagent']['policy_mapping_fn']
for episode in range(100):
print('Episode: ' . format (episode))
obs = sim.reset()
done = {agent: False for agent in obs}
while True: # Run until the episode ends
# Get actions from policies
joint_action = {}
for agent_id, agent_obs in obs.items():
if done[agent_id]: continue # Don't get actions for done agents
policy_id = policy_agent_mapping(agent_id)
action = trainer.compute_action(agent_obs, policy_id=policy_id)
joint_action[agent_id] = action
# Step the simulation
obs, reward, done, info = sim.step(joint_action)

(continues on next page)
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(continued from previous page)

if done['__all__']:
break

Analysis can then be performed using the command line interface:

abmarl analyze ~/abmarl_results/MultiCorridor-2020-08-25_09-30/ my_analysis_script.py

1.5. Analyzing 9
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CHAPTER
TWO

GRIDWORLD SIMULATION FRAMEWORK

Abmarl provides a GridWorld Simulation Framework for setting up grid-based Agent Based Simulations, which can
be connected to Reinforcement Learning algorithms through Abmarl’s AgentBasedSimulation interface. The Grid-
World Simulation Framework is a grey box: we assume users have working knowledge of Python and object-oriented
programming. Using the built in features requires minimal knowledge, but extending them and creating new features
requires more knowledge. In addition to the design documentation below, see the GridWorld tutorials for in-depth
examples on using and extending the GridWorld Simulation Framework.

2.1 Framework Design

The GridWorld Simulation Framework utilizes a modular design that allows users to create new features and plug them
in as components of the simulation. Every component inherits from the GridWorldBaseComponent class and has a
reference to a Grid and a dictionary of Agents. These components make up a GridWorldSimulation, which extends the
AgentBasedSimulation interface. For example, a simulation might look something like this:

from abmarl.sim.gridworld.base import GridWorldSimulation
from abmarl.sim.gridworld.state import PositionState

from abmarl.sim.gridworld.actor import MoveActor

from abmarl.sim.gridworld.observer import SingleGridObserver

class MyGridSim(GridWorldSimulation):
def __init__(self, **kwargs):
self.agents = kwargs['agents']
self.position_state = PositionState(**kwargs)
self.move_actor = MoveActor (**kwargs)
self.observer = SingleGridObserver (**kwargs)

def reset(self, **kwargs):
self.position_state.reset(**kwargs)

def step(self, action_dict):
for agent_id, action in action_dict.items():
self.move_actor.process_action(self.agents[agent_id], action)

def get_obs(self, agent_id, **kwargs):
return self.observer.get_obs(self.agents[agent_id])

11
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Fig. 1: Abmarl’s GridWorld Simulation Framework. A simulation has a Grid, a dictionary of agents, and various com-
ponents that manage the various features of the simulation. The componets shown in medium-blue are user-configurable
and -creatable.

12 Chapter 2. GridWorld Simulation Framework
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2.1.1 Agent

Every entity in the simulation is a GridWorldAgent (e.g. walls, foragers, resources, fighters, etc.). GridWorldAgents
are PrincipleAgents with specific parameters that work with their respective components. Agents must be given an
encoding, which is a positive integer that correlates to the type of agent and simplifies the logic for many components
of the framework. GridWorldAgents can also be configured with an initial position, the ability to block other agents’
abilities, and visualization parameters such as shape and color.

Following the dataclass model, additional agent classes can be defined that allow them to work with various components.
For example, GridObservingAgents can work with Observers, and MovingAgents can work with the MoveActor. Any
new agent class should inhert from GridWorldAgent and possibly from ActingAgent or ObservingAgent as needed. For
example, one can define a new type of agent like so:

from abmarl.sim.gridworld.agent import GridWorldAgent
from abmarl.sim import ActingAgent

class CommunicatingAgent (GridWorldAgent, ActingAgent):
def __init__(self, broadcast_range=None, **kwargs):
super().__init__ (**kwargs)
self.broadcast_range = broadcast_range

Warning: Agents should follow the dataclass model, meaning that they should only be given parameters. All
functionality should be written in the simulation components.

2.1.2 Grid

The Grid stores Agents in a two-dimensional numpy array. The Grid is configured to be a certain size (rows and
columns) and to allow types of Agents to overlap (occupy the same cell). For example, you may want a ForagingAgent
to be able to overlap with a ResourceAgent but not a WallAgent. The overlapping parameter is a dictionary that maps
the Agent’s encoding to a list of other Agents’ encodings with which it can overlap. For example,

from abmarl.sim.gridworld.grid import Grid

overlapping = {

1: [2],
2: [1, 317,
3: [2, 3]

}
grid = Grid(5, 6, overlapping=overlapping)

means that agents whose encoding is 1 can overlap with other agents whose encoding is 2; agents whose encoding is 2
can overlap with other agents whose encoding is 1 or 3; and agents whose encoding is 3 can overlap with other agents
whose encoding is 2 or 3.

Warning: To avoid undefined behavior, the overlapping should be symmetric, so that if 2 can overlap with 3, then
3 can also overlap with 2.

Note: If overlapping is not specified, then no agents will be able to occupy the same cell in the Grid.

2.1. Framework Design 13
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Interaction between simulation components and the Grid is data open, which means that we allow components to
access the internals of the Grid. Although this is possible and sometimes necessary, the Grid also provides an interface
for safer interactions with components. Components can guery the Grid to see if an agent can be placed at a specific
position. Components can place agents at a specific position in the Grid, which will succeed if that cell is available
to the agent as per the overlapping configuration. And Components can remove agents from specific positions in the
Grid.

2.1.3 State

State Components manage the state of the simulation alongside the Grid. At the bare minimum, each State resets the
part of the simulation that it manages at the the start of each episode.

2.1.4 Actor

Actor Components are responsible for processing agent actions and producing changes to the state of the simulation.
Actors assign supported agents with an appropriate action space and process agents’ actions based on the Actor’s key.
The result of the action is a change in the simulation’s state, and Actors should return that change in a reasonable form.
For example, the MoveActor appends MovingAgents’ action spaces with a ‘move’ channel and looks for the ‘move’ key
in the agent’s incoming action. After a move is processed, the MoveActor returns if the move was successful.

2.1.5 Observer

Observer Components are responsible for creating an agent’s observation of the state of the simulation. Observers
assign supported agents with an appropriate observation space and generate observations based on the Observer’s key.
For example, the SingleGridObserver generates an observation of the nearby grid and stores it in the ‘grid’ channel of
the ObservingAgent’s observation.

2.1.6 Done

Done Components manage the “done state” of each agent and of the simulation as a whole. Agents that are reported as
done will cease sending actions to the simulation, and the episode will end when all the agents are done or when the
simulation is done.

2.1.7 Component Wrappers

The GridWorld Simulation Framework also supports Component Wrappers. Wrapping a component can be useful
when you don’t want to add a completely new component and only need to make a modification to the way a component
already works. A component wrapper is itself a component, and so it must implement the same interface as the wrapped
component to ensure that it works within the framework. A component wrapper also defines additional functions
for wrapping spaces and data to and from those spaces: check_space for ensuring the space can be transformed,
wrap_space to perform the transformation, and wrap_point to map data to the transformed space.

As its name suggests, a Component Wrapper stands between the underlying component and other objects with which
it exchanges data. As such, a wrapper typically modifies the incoming/outgoing data before leveraging the underlying
component for the actual datda processing. The main difference among wrapper types is in the direction of data flow,
which we detail below.

14 Chapter 2. GridWorld Simulation Framework



Abmarl, Release 0.2.2

Actor Wrappers

An Actor Wrappers receives actions in the wrapped_space through the process_action function. It can modify the
data before sending it to the underlying Actor to process. An Actor Wrapper may need to modify the action spaces of
corresponding agents to ensure that the action arrives in the correct format.

2.2 Built-in Features

Below is a list of some features that are available to use out of the box. Rememeber, you can create your own features
in the GridWorld Simulation Framework and use many combinations of components together to make up a simulation.

2.2.1 Position

Agents have positions in the Grid that are managed by the PositionState. Agents can be configured with an initial
position, which is where they will start at the beginning of each episode. If they are not given an initial position, then
they will start at a random cell in the grid. Agents can overlap according to the Grid’s overlapping configuration. For
example, consider the following setup:

import numpy as np

from abmarl.sim.gridworld.agent import GridWorldAgent
from abmarl.sim.gridworld.grid import Grid

from abmarl.sim.gridworld.state import PositionState

agent® = GridWorldAgent(
id="agent®"',
encoding=1,
initial_position=np.array([2, 4])

)

agentl = GridWorldAgent(
id="agentl"',
encoding=1

)

position_state = PositionState(
agents={'agent0®': agent®, 'agentl': agentl},
grid=Grid(4, 5)

)

position_state.reset()

agent0 is configured with an initial position and agentl is not. At the start of each episode, agent0 will be placed at (2,
4) and agentl will be placed anywhere in the grid (except for (2,4) because they cannot overlap).

2.2.2 Movement

MovingAgents can move around the Grid in conjunction with the MoveActor. MovingAgents require a move range
parameter, indicating how many spaces away they can move in a single step. Agents cannot move out of bounds and
can only move to the same cell as another agent if they are allowed to overlap. For example, in this setup

import numpy as np
from abmarl.sim.gridworld.agent import MovingAgent
from abmarl.sim.gridworld.grid import Grid

(continues on next page)
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Fig. 2: agentO in green starts at the same cell in every episode, and agent] in blue starts at a random cell each time.

(continued from previous page)

from abmarl.sim.gridworld.state import PositionState
from abmarl.sim.gridworld.actor import MoveActor

agents = {
'agent®': MovingAgent(
id="agent®', encoding=1, move_range=1, initial_position=np.array([2, 2])
),
'agentl': MovingAgent(
id="agentl', encoding=1, move_range=2, initial_position=np.array([0, 2])
)
}
grid = Grid(5, 5, overlapping={1: [1]1})
position_state = PositionState(agents=agents, grid=grid)
move_actor = MoveActor(agents=agents, grid=grid)

position_state.reset()
move_actor.process_action(agents['agent®'], {'move': np.array([0®, 1]1)})
move_actor.process_action(agents['agentl'], {'move': np.array([2, 1])})

agent0 starts at position (2, 2) and can move up to one cell away. agentl starts at (0, 2) and can move up to two cells
away. The two agents can overlap each other, so when the move actor processes their actions, both agents will be at
position (2, 3).

2.2.3 Single Grid Observer

GridObservingAgents can observe the state of the Grid around them, namely which other agents are nearby, via the Sin-
gleGridObserver. The SingleGridObserver generates a two-dimensional array sized by the agent’s view range with the
observing agent located at the center of the array. All other agents within the view range will appear in the observation,
shown as their encoding. For example, the following setup

import numpy as np
from abmarl.sim.gridworld.agent import GridObservingAgent, GridWorldAgent
from abmarl.sim.gridworld.grid import Grid

(continues on next page)

16 Chapter 2. GridWorld Simulation Framework
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Fig. 3: agentO and agentl move to the same cell.

(continued from previous page)

from abmarl.sim.gridworld.state import PositionState
from abmarl.sim.gridworld.observer import SingleGridObserver

agents = {

"agent®': GridObservingAgent(id='agent0', encoding=1, initial_position=np.array([2,.
—2]), view_range=3),

'agentl': GridWorldAgent(id='agentl', encoding=2, initial_position=np.array([0, 1])),

'agent2': GridWorldAgent(id='agent2', encoding=3, initial_position=np.array([1l, 0])),

'agent3': GridWorldAgent(id='agent3', encoding=4, initial_position=np.array([4, 4])),

'agent4': GridWorldAgent(id='agent4', encoding=5, initial_position=np.array([4, 4])),

'agent5': GridWorldAgent(id='agent5', encoding=6, initial_position=np.array([5, 5]))
}
grid = Grid(6, 6, overlapping={4: [5], 5: [4]})
position_state = PositionState(agents=agents, grid=grid)
observer = SingleGridObserver(agents=agents, grid=grid)

position_state.reset()
observer.get_obs(agents['agent0'])

will position agents as below and output an observation for agent0 (blue) like so:

-1, -1, -1, -1, -1, -1, -17,
(-1, o, 2, 06, 0, 0, 0],
(-1, 3, 0, 0, 0, 0, 0],
(-1, o, O, 1, 6, 0, 0],
[-1, o6, O, 0, 0, 0, 0],
[-1, o, O, 0, 0, 4%, 0],
[-1, o, 6, 0, O, 0, 6]

KA

Since view range is the number of cells away that can be observed, the observation size is (2 * view_range + 1)
x (2 * view_range + 1). agentO is centered in the middle of this array, shown by its encoding: 1. All other agents
appear in the observation relative to agentO’s position and shown by their encodings. The agent observes some out of
bounds cells, which appear as -1s. agent3 and agent4 occupy the same cell, and the SingleGridObserver will randomly
select between their encodings for the observation.

2.2. Built-in Features 17
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By setting observe_self to False, the SingleGridObserver can be configured so that an agent doesn’t observe itself and
only observes other agents, which may be helpful if overlapping is an important part of the simulation.

Blocking

Agents can block other agents’ abilities and characteristics, such as blocking them from view, which masks out parts of
the observation. For example, if agent4 is configured with blocking=True, then the observation would like like this:

-1, -11,
0, 01,
» 0, 0],
0
0

[-1
[-1
-1, 3,
(-1,
[-1
[-1
[-1

1
0
0

, 0, 0, 0],
0 , 01,
0, 4%, 0],
0

’ ®! _2]

@223 WS~
o2 N~
DO DD

The -2 indicates that the cell is masked, and the choice of displaying agent3 over agent4 is still a random choice. Which
cells get masked by blocking agents is determined by drawing two lines from the center of the observing agent’s cell to
the corners of the blocking agent’s cell. Any cell whose center falls between those two lines will be masked, as shown
below.

2.2.4 Multi Grid Observer

Similar to the SingleGridObserver, the MultiGridObserver displays a separate array for every encoding. Each array
shows the relative positions of the agents and the number of those agents that occupy each cell. Out of bounds indicators
(-1) and masked cells (-2) are present in every grid. For example, this setup would show an observation like so:

# Encoding 1

(-1, -1, -1, -1, -1, -1, -17,
[-1, o, O, 0, 0, 0, 0],
(-1, o, O, 0, 0, 0, 0],
[-1, o, O, 1, 6, 0, 0],
[-1, o, O, 0, 06, 0, 0],
[-1, o6, O, 0, 06, 0, 0],
(-1, o, 6, 0, 0, 0, -2]

(continues on next page)
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9 9

Fig. 4: The black agent is a wall agent that masks part of the grid from the blue agent. Cells whose centers fall betweent
the lines are masked. Centers that fall directly on the line or outside of the lines are not masked. Two setups are shown
to demonstrate how the masking may change based on the agents’ positions.
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(continued from previous page)

# Encoding 2

-1, -1, -1, -1, -1, -1, -17,
[-1, o, 1, ©6, O, 0, 0],
[-1, o, O, O, 0, 0, 0],
[-1, o, 0, O, 0O, 0, 0],
[-1, o, 0, O, 0, 0, 0],
[-1, ©, ©®, 6, 0, 0, 0],
[-1, O, ©®, 6, 0, 0, -2]

MultiGridObserver may be preferable to SingleGridObserver in simulations where there are many overlapping agents.

2.2.5 Health

HealthAgents track their health throughout the simulation. Health is always bounded between 0 and 1. Agents whose
health falls to 0 are marked as inactive. They can be given an initial health, which they start with at the beginning of the
episode. Otherwise, their health will be a random number between 0 and 1, as managed by the HealthState. Consider
the following setup:

from abmarl.sim.gridworld.agent import HealthAgent
from abmarl.sim.gridworld.grid import Grid
from abmarl.sim.gridworld.state import HealthState

agent® = HealthAgent(id='agent0®', encoding=1)

grid = Grid(3, 3)

agents = {'agent0': agent0}

health_state = HealthState(agents=agents, grid=grid)
health_state.reset()

agent0 will be assigned a random health value between 0 and 1.

2.2.6 Attacking

Health becomes more interesting when we let agents attack one another. AtfackingAgents work in conjunction with the
AttackActor. They have an attack range, which dictates the range of their attack; an attack accuracy, which dictates the
chances of the attack being successful; and an attack strength, which dictates how much health is depleted from the
attacked agent. An agent’s choice to attack is a boolean—either attack or don’t attack—and then the AttackActor deter-
mines the successfulness based on the state of the simulation and the attributes of the AttackingAgent. The AttackActor
requires an attack mapping dictionary which determines which encodings can attack other encodings, similar to the
overlapping parameter for the Grid. Consider the following setup:

import numpy as np

from abmarl.sim.gridworld.agent import AttackingAgent, HealthAgent
from abmarl.sim.gridworld.grid import Grid

from abmarl.sim.gridworld.state import PositionState, HealthState
from abmarl.sim.gridworld.actor import AttackActor

agents = {
"agent®': AttackingAgent(
id="agent®',
encoding=1,

(continues on next page)
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(continued from previous page)

initial_position=np.array([0, 0]),
attack_range=1,
attack_strength=1,
attack_accuracy=1
)
'agentl': HealthAgent(id='agentl', encoding=2, initial_position=np.array([1l, 0])),
'agent2': HealthAgent(id='agent2', encoding=3, initial_position=np.array([0®, 1]))
}
grid = Grid(2, 2)
position_state = PositionState(agents=agents, grid=grid)
health_state = HealthState(agents=agents, grid=grid)
attack_actor = AttackActor(agents=agents, grid=grid, attack_mapping={1: [2]})

position_state.reset()

health_state.reset()
attack_actor.process_action(agents['agent0'], {'attack': True})
attack_actor.process_action(agents['agent0'], {'attack': True})

Here, agent0 attempts to make two attack actions. The first one is successful because agent! is within its attack range
and is attackable according to the attack mapping. agentl’s health will be depleted by 1, and as a result its health will
fall to 0 and it will be marked as inactive. The second attack fails because, although agent2 is within range, it is not a
type that agentO can attack.

Fig. 5: agent0 in blue performs two attacks. The first is successful, but the second is not. agentl in green is killed, but
agent2 in red is still active.

Note: Attacks can be blocked by blocking agents. If an attackable agent is masked from an attacking agent, then it
cannot be attacked by that agent. The masking is determined the same way as view blocking described above.
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2.2.7 RavelActionWrapper

The RavelActionWrapper transforms Discrete, MultiBinary, MultiDiscrete, bounded integer Box, and any nesting of
those spaces into a Discrete space by “ravelling” their values according to numpy’s ravel_multi_index function.
Thus, actions that are represented by arrays are converted into unique Discrete numbers. For example, we can apply

the RavelActionWrapper to the MoveActor, like so:

from abmarl.sim.gridworld.agent import MovingAgent

from abmarl.sim.gridworld.grid import Grid

from abmarl.sim.gridworld.state import PositionState

from abmarl.sim.gridworld.actor import MoveActor

from abmarl.sim.gridworld.wrapper import RavelActionWrapper

agents = {
"agent®': MovingAgent(id='agent®', encoding=1, move_range=1),
'agentl': MovingAgent(id='agentl', encoding=1, move_range=2)
}
grid = Grid(5, 5)
position_state = PositionState(agents=agents, grid=grid)
move_actor = MoveActor(agents=agents, grid=grid)
for agent in agents.values():
agent.finalize()
position_state.reset()

# Move actor without wrapper
actions = {

agent.id: agent.action_space.sample() for agent in agents.values()
}
print(actions)
# >>> {'agent0': OrderedDict([('move', array([1, 1]))]), 'agentl': OrderedDict([(‘move',.
—array([ 2, -11))1}

# Wrapped move actor
move_actor = RavelActionWrapper (move_actor)
actions = {

agent.id: agent.action_space.sample() for agent in agents.values()
}
print(actions)
# >>> {'agent0®': OrderedDict([(move', 1)]), 'agentl': OrderedDict([(‘move', 22)])}

The actions from the unwrapped actor are in the original Box space, whereas after we apply the wrapper, the actions
from the wrapped actor are in the transformed Discrete space. The actor will receive move actions in the Discrete space

and convert them to the Box space before passing them to the MoveActor.
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CHAPTER
THREE

FEATURED USE CASES

3.1 Emergent Collaborative and Competitive Behavior

In this experiment, we study how collaborative and competitive behaviors emerge among agents in a partially observable
stochastic game. In our simulation, each agent occupies a square and can move around the map. Each agent can “attack”
agents that are on a different “team”; the attacked agent loses its life and is removed from the simulation. Each agent
can observe the state of the map in a region surrounding its location. It can see other agents and what team they’re on
as well as the edges of the map. The diagram below visuially depicts the agents’ observation and action spaces.

Observations Simple behavioral policy. Move
No env model.
No global view.
Only local actions. N| ] L
— .—v.ﬁ
®
= TF
||
E“Z o —
EERIR N K Forage/Hunt
[[e. . ©. @. -1. -1. -1.] e
[0. ©. @. @. -1. -1. -1.] = =
[e. ©. @. @. -1. -1. -1.]
[e. eo. o. @) -1. -1. -1.] -
[e. 1. 8. @. -1. -1. -1.] t 1
[e. ©. @. @. -1. -1. -1.] .l.l
[e. o. o. 6. -1. -1. -1.]] Experience impact of other agents
through the environment.

Fig. 1: Each agent has a partial observation of the map centered around its location. The green box shows the orange
agent’s observation of the map, and the matrix below it shows the actual observation. Each agent can choose to move
or to “attack” another agent in one of the nearby squares. The policy is just a simple 2-layer MLP, each layer having
64 units. We don’t apply any kind of specialized architecture that encourages collaboration or competition. Each agent
is simple: they do not have a model of the simulation; they do not have a global view of the simulation; their actions
are only local in both space and in agent interaction (they can only interact with one agent at a time). Yet, we will see
efficient and complex strategies emerge, collaboration and competition from the common or conflicting interest among
agents.

In the various examples below, each policy is a two-layer MLP, with 64 units in each layer. We use RLI1ib’s A2C Trainer
with default parameters and train for two million episodes on a compute node with 72 CPUs.
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Attention: This page makes heavy use of animated graphics. It is best to read this content on our html site instead
of our pdf manual.

3.1.1 Single Agent Foraging

We start by considering a single foraging agent whose objective is to move around the map collecting resource agents.
The single forager can see up to three squares away, move up to one square away, and forage (“attack’) resources up to
one square away. The forager is rewarded for every resource it collects and given a small penalty for attempting to move
off the map and an even smaller “entropy” penalty every time-step to encourage it to act quickly. At the beginning of
every episode, the agents spawn at random locations in the map. Below is a video showing a typical full episode of the
learned behavior and a brief analysis.

Note: From an Agent Based Modeling perspective, the resources are technically agents themselves. However, since
they don’t do or see anything, we tend not to call them agents in the text that follows.
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Fig. 2: A full episode showing the forager’s learned strategy. The forager is the blue circle and the resources are the
green squares. Notice how the forager bounces among resource clusters, greedily collecting all local resources before
exploring the map for more.
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When it can see resources

The forager moves toward the closest resource that it observes and collects it. Note that the foraging range is 1 square:
the forager rarely waits until it is directly over a resource; it usually forages as soon as it is within range. In some cases,
the forager intelligently places itself in the middle of 2-3 resources in order to forage within the least number of moves.
When the resources are near the edge of the map, it behaves with some inefficiency, likely due to the small penalty we
give it for moving off the map, which results in an aversion towards the map edges. Below is a series of short video
clips showing the foraging strategy.

i

19
18 4 H
17 4

16 -
15 4 o

‘ O

14 -

13 4
12 4
11 4

10 1
O

O
|

O N WLBELOO O
1 .

] L] L]

0O 1 2 3 4 5 6 7 8 9101

L L] L] L

1 12 13 14 15 16 17 18 19

Fig. 3: The forager learns an effective foraging strategy, moving towards and collecting the nearest resources that it
observes.

When it cannot see resources

The forager’s behavior when it is near resources is not surprising. But how does it behave when it cannot see any
resources? The forager only sees that which is near it and does not have any information distinguishing one “deserted”
area of the map from another. Recall, however, that it observes the edges of the map, and it uses this information to
learn an effecive exploration strategy. In the video below, we can see that the forager learns to explore the map by
moving along its edges in a clockwise direction, occasionally making random moves towards the middle of the map.

Important: We do not use any kind of heuristic or mixed policy. The exporation strategy emerges entirely from
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Fig. 4: The forager learns an effective exploration strategy, moving along the edge of the map in a clockwise direction.
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reinforcement learning.

3.1.2 Multiple Agents Foraging

Having experimented with a single forager, let us now turn our attention to the strategies learned by multiple foragers
interacting in the map at the same time. Each forager is homogeneous with each other as described above: they can
all move up to one square away, observe up to three squares away, and are rewarded the same way. The observations
include other foragers in addition to the resources and map edges. All agents share a single policy. Below is a brief
analysis of the learned behaviors.

Cover and explore

Our reward schema implicitly encourages the foragers to collaborate because we give a small penalty to each one for
taking too long. Thus, the faster they can collect all the resources, the less they are penalized. Furthermore, because
each agent trains the same policy, there is no incentive for competitive behavior. An agent can afford to say, “I don’t
need to get the resource first. As long as one of us gets it quickly, then we all benefit”. Therefore, the foragers learn to
spread out to cover the map, maximizing the amount of squares that are observed.

In the video clips below, we see that the foragers avoid being within observation distance of one another. Typically,
when two foragers get too close, they repel each other, each moving in opposite directions, ensuring that the space is
covered. Furthermore, notice the dance-like exploration strategy. Similar to the single-agent case above, they learn
to explore along the edges of the map in a clockwise direction. However, they’re not as efficient as the single agent
because they “repel” each other.

Important: We do not directly incentivize agents to keep their distance. No part of the reward schema directly deals
with the agents’ distances from each other. These strategies are emergent.

Breaking the pattern

When a forager observes a resource, it breaks its “cover and explore” strategy and moves directly for the resource. Even
multiple foragers move towards the same resource. They have no reason to coordinate who will get it because, as we
stated above, there is no incentive for competition, so no need to negotiate. If another forager gets there first, everyone
benefits. The foragers learn to prioritize collecting the resources over keeping their distance from each other.

Tip: We should expect to see both of these strategies occuring at the same time within a simulation because while
some agents are “covering and exploring”, others are moving towards resources.

3.1.3 Introducing Hunters

So far, we have seen intelligent behaviors emerge in both single- and multi-forager scenarios; we even saw the emergence
of collaborative behavior. In the following experiments, we explore competitive emergence by introducing hunters into
the simulation. Like foragers, hunters can move up to one square away and observe other agents and map edges up to
three squares away. Hunters, however, are more effective killers and can attack a forager up to two squares away. They
are rewarded for successful kills, they are and penalized for bad moves and for taking too long, exactly the same way
as foragers.
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Fig. 5: The foragers cover the map by spreading out and explore it by traveling in a clockwise direction.
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Fig. 6: The foragers move towards resources to forage, even when there are other foragers nearby.
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However, the hunters and foragers have completely different objectives: a forager tries to clear the map of all resources,
but a hunter tries to clear the map of all foragers. Therefore, we set up two policies. All the hunters will train the same
policy, and all the foragers will train the same policy, and these policies will be distinct.

The learned behaviors among the two groups in this mixed collaborate-competitive simulation are tightly integrated,
with multiple strategies appearing at the same time within a simulation. Therefore, in contrast to above, we will not
show video clips that capture a single strategy; instead, we will show video clips that capture multiple strategies and
attempt to describe them in detail.

First Scenario
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Two of the foragers spawn next to hunters and are killed immediately. Afterwards, the two hunters on the left do not
observe any foragers for some time. They seem to have learned the cover strategy by spreading out, but they don’t seem
to have learned an effecient explore strategy since they mostly occupy the same region of the map for the duration of
the simulation.

Three foragers remain at the bottom of the map. These foragers work together to collect all nearby resources. Just as
they finish the resource cluster, a hunter moves within range and begins to chase them towards the bottom of the map.
When they hit the edge, they split in two directions. The hunter kills one of them and then waits for one step, unsure
about which forager to persue next. After one step, we see that it decides to persue the forager to the right.

Meanwhile, the forager to the left continues to run away, straight into the path of another hunter but also another

resource. The forager could get away by running to the right, but it decides to collect the resource at the cost of its own
life.
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The last remaining forager has escaped the hunter and has conveniently found another cluster of resources, which it
collects. A few frames later, it encounters the same hunter, and this time it is chased all the way across the map. It
manages to evade the hunter and collect one final resource before encountering yet another hunter. At the end, we see
both hunters chasing the forager to the top of the map, boxing it in and killing it.

Second scenario
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None of the foragers are under threat at the beginning of this scenario. They clear a cluster of resources before one of
them wanders into the path of a hunter. The hunter gives chase, and the forager actually leads the hunter back to the
group. This works to its benefit, however, as the hunter is repeatedly confused by the foragers exercising the splitting
strategy. Meanwhile the second hunter has spotted a forager and joins the hunt. The two hunters together are able to
split up the pack of foragers and systematically hunt them down. The last forager is chased into the corner and killed.

Note: Humorously, the first forager that was spotted is the one who manages to stay alive the longest.
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CHAPTER

FOUR

INSTALLATION

4.1 User Installation

You can install abmarl via pip:

pip install abmarl

4.2 Developer Installation

To install Abmarl for development, first clone the repository and then install via pip’s development mode.

git clone git@github.com:LLNL/Abmarl.git

cd abmarl
pip install -r requirements.txt
pip install -e . --no-deps

Warning: If you are using conda to manage your virtual environment, then you must also install ffmpeg.
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CHAPTER
FIVE

FULL TUTORIALS

We provide tutorials that demonstrate how to train, visualize, and analyze MARL policies. We also provide tutorials
on the GridWorldSimulation framework.

5.1 MultiCorridor

MultiCorridor extends RLIib’s simple corridor, wherein agents must learn to move to the right in a one-dimensonal
corridor to reach the end. Our implementation provides the ability to instantiate multiple agents in the simulation and
restricts agents from occupying the same square. Every agent is homogeneous: they all have the same action space,
observation space, and objective function.

Fig. 1: Animation of agents moving left and right in a corridor until they reach the end.

This tutorial uses the MultiCorridor simulation and the MultiCorridor configuration.

5.1.1 Creating the MultiCorridor Simulation
The Agents in the Simulation

It’s helpful to start by thinking about what we want the agents to learn and what information they will need in order to
learn it. In this tutorial, we want to train agents that can reach the end of a one-dimensional corridor without bumping
into each other. Therefore, agents should be able to move left, move right, and stay still. In order to move to the end of
the corridor without bumping into each other, they will need to see their own position and if the squares near them are
occupied. Finally, we need to decide how to reward the agents. There are many ways we can do this, and we should at
least capture the following:

* The agent should be rewarded for reaching the end of the corridor.
* The agent should be penalized for bumping into other agents.
* The agent should be penalized for taking too long.

Since all our agents are homogeneous, we can create them in the Agent Based Simulation itself, like so:
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from enum import IntEnum

from gym.spaces import Box, Discrete, MultiBinary
import numpy as np

from abmarl.sim import Agent, AgentBasedSimulation
class MultiCorridor(AgentBasedSimulation):

class Actions(IntEnum): # The three actions each agent can take

LEFT = 0
STAY = 1
RIGHT = 2

def __init__(self, end=10, num_agents=5):
self.end = end
agents = {}
for i in range(num_agents):
agents[f'agent{i}'] = Agent(
id=f'agent{i}",
action_space=Discrete(3), # Move left, stay still, or move right
observation_space={
'position': Box(0®, self.end-1, (1,), int), # Observe your own.
—position
'left': MultiBinary(l), # Observe if the left square is occupied
'right': MultiBinary(l) # Observe if the right square is occupied
}
)

self.agents = agents

self.finalize()

Here, notice how the agents’ observation_space is a dict rather than a gym.space.Dict. That’s okay because our Agent
class can convert a dict of gym spaces into a Dict when finalize is called at the end of __init__.

Resetting the Simulation

At the beginning of each episode, we want the agents to be randomly positioned throughout the corridor without
occupying the same squares. We must give each agent a position attribute at reset. We will also create a data structure
that captures which agent is in which cell so that we don’t have to do a search for nearby agents but can directly index
the space. Finally, we must track the agents’ rewards.

def reset(self, **kwargs):

location_sample = np.random.choice(self.end-1, len(self.agents), False)

# Track the squares themselves

self.corridor = np.empty(self.end, dtype=object)

# Track the position of the agents

for i, agent in enumerate(self.agents.values()):
agent.position = location_sample[i]
self.corridor[location_sample[i]] = agent

# Track the agents' rewards over multiple steps.

(continues on next page)
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(continued from previous page)

self.reward = {agent_id: ® for agent_id in self.agents}

Stepping the Simulation

The simulation is driven by the agents’ actions because there are no other dynamics. Thus, the MultiCorridor Simulation
only concerns itself with processing the agents’ actions at each step. For each agent, we’ll capture the following cases:

* An agent attempts to move to a space that is unoccupied.
* An agent attempts to move to a space that is already occupied.

* An agent attempts to move to the right-most space (the end) of the corridor.

def step(self, action_dict, **kwargs):

for agent_id, action in action_dict.items():
agent = self.agents[agent_id]
if action == self.Actions.LEFT:
if agent.position != 0 and self.corridor[agent.position-1] is None:

# Good move, no extra penalty
self.corridor[agent.position] = None
agent.position -= 1
self.corridor[agent.position] = agent
self.reward[agent_id] -= 1 # Entropy penalty

elif agent.position == 0: # Tried to move left from left-most square
# Bad move, only acting agent is involved and should be penalized.
self.reward[agent_id] -= 5 # Bad move

else: # There was another agent to the left of me that I bumped into
# Bad move involving two agents. Both are penalized
self.reward[agent_id] -= 5 # Penalty for offending agent
# Penalty for offended agent
self.reward[self.corridor[agent.position-1].id] -= 2

elif action == self.Actions.RIGHT:

if self.corridor[agent.position + 1] is None:
# Good move, but is the agent done?
self.corridor[agent.position] = None
agent.position += 1

if agent.position == self.end-1:
# Agent has reached the end of the corridor!
self.reward[agent_id] += self.end ** 2

else:

# Good move, no extra penalty
self.corridor[agent.position] = agent
self.reward[agent_id] -= 1 # Entropy penalty
else: # There was another agent to the right of me that I bumped into
# Bad move involving two agents. Both are penalized
self.reward[agent_id] -= 5 # Penalty for offending agent
# Penalty for offended agent
self.reward[self.corridor[agent.position+1].id] -= 2
elif action == self.Actions.STAY:
self.reward[agent_id] -= 1 # Entropy penalty

5.1.
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Attention: Our reward schema reveals a training dynamic that is not present in single-agent simulations: an
agent’s reward does not entirely depend on its own interaction with the simulation but can be affected by other
agents’ actions. In this case, agents are slightly penalized for being “bumped into” when other agents attempt to
move onto their square, even though the “offended” agent did not directly cause the collision. This is discussed
in MARL literature and captured in the way we have designed our Simulation Managers. In Abmarl, we favor
capturing the rewards as part of the simulation’s state and only “flushing” them once they rewards are asked for in
get_reward.

Note: We have not needed to consider the order in which the simulation processes actions. Our simulation simply
provides the capabilities to process any agent’s action, and we can use Simulation Managers to impose an order. This
shows the flexibility of our design. In this tutorial, we will use the TurnBasedManager, but we can use any Simulation-
Manager.

Querying Simulation State

The trainer needs to see how agents’ actions impact the simulation’s state. They do so via getters, which we define
below.

def get_obs(self, agent_id, **kwargs):
agent_position = self.agents[agent_id].position

if agent_position == 0 or self.corridor[agent_position-1] is None:
left = False
else:
left = True
if agent_position == self.end-1 or self.corridor[agent_position+1] is None:
right = False
else:
right = True
return {

'position': [agent_position],
"left': [left],
'right': [right],

}

def get_done(self, agent_id, **kwargs):
return self.agents[agent_id].position == self.end - 1

def get_all_done(self, **kwargs):
for agent in self.agents.values():
if agent.position != self.end - 1:
return False
return True

def get_reward(self, agent_id, **kwargs):
agent_reward = self.reward[agent_id]
self.reward[agent_id] = 0
return agent_reward

def get_info(self, agent_id, **kwargs):
return {}
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Rendering for Visualization

Finally, it’s often useful to be able to visualize a simulation as it steps through an episode. We can do this via the render
funciton.

def render(self, *args, fig=None, **kwargs):
draw_now = fig is None
if draw_now:
from matplotlib import pyplot as plt
fig = plt.gcfQ

fig.clear()
ax = fig.gca(Q
ax.set(xlim=(-0.5, self.end + 0.5), ylim=(-0.5, 0.5))
ax.set_xticks(np.arange(-0.5, self.end + 0.5, 1.))
ax.scatter(np.array(
[agent.position for agent in self.agents.values()]),
np.zeros(len(self.agents)),
marker="'s', s=200, c='g"'

)

if draw_now:
plt.plot()
plt.pause(le-17)

5.1.2 Training the MultiCorridor Simulation

Now that we have created the simulation and agents, we can create a configuration file for training.

Simulation Setup

We'll start by setting up the simulation we have just built. Then we’ll choose a Simulation Manager. Abmarl comes
with two built-In managers: TurnBasedManager, where only a single agent takes a turn per step, and AllStepManager,
where all non-done agents take a turn per step. For this experiment, we’ll use the TurnBasedManager. Then, we’ll
wrap the simulation with our MultiAgentWrapper, which enables us to connect with RLIib. Finally, we’ll register the
simulation with RLIib.

# MultiCorridor is the simulation we created above
from abmarl.sim.corridor import MultiCorridor
from abmarl.managers import TurnBasedManager

# MultiAgentWrapper needed to connect with RL1ib
from abmarl.external import MultiAgentWrapper

# Create an instance of the simulation and register it
sim = MultiAgentWrapper (TurnBasedManager (MultiCorridor()))
sim_name = "MultiCorridor"

from ray.tune.registry import register_env
register_env(sim_name, lambda sim_config: sim)
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Policy Setup

Now we want to create the policies and the policy mapping function in our multiagent experiment. Each agent in our
simulation is homogeneous: they all have the same observation space, action space, and objective function. Thus, we
can create a single policy and map all agents to that policy.

ref_agent = sim.unwrapped.agents['agent0']
policies = {
"corridor': (None, ref_agent.observation_space, ref_agent.action_space, {})
3
def policy_mapping_fn(agent_id):
return 'corridor’

Experiment Parameters

Having setup the simulation and policies, we can now bundle all that information into a parameters dictionary that will
be read by Abmarl and used to launch RLIib.

params = {
'experiment': {
"title': f'{sim_name}',
'sim_creator': lambda config=None: sim,

1
'ray_tune': {
'run_or_experiment': 'PG',
'checkpoint_freq': 50,
'checkpoint_at_end': True,
'stop': {
'episodes_total': 2000,
1
'verbose': 2,
'config': {
# --- Simulation ---
'env': sim_name,
'horizon': 200,
'env_config': {},
# --- Multiagent ---
'multiagent': {
'policies': policies,
'policy_mapping_fn': policy_mapping_£n,
1,
# --- Parallelism ---
# Number of workers per experiment: int
"num_workers": 7,
# Number of simulations that each worker starts: int
"num_envs_per_worker": 1, # This must be 1 because we are not "threadsafe"
s
}
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Command Line interface

With the configuration file complete, we can utilize the command line interface to train our agents. We simply type
abmarl train multi_corridor_example.py, where multi_corridor_example.py is the name of our configuration
file. This will launch Abmarl, which will process the file and launch RLIib according to the specified parameters.
This particular example should take 1-10 minutes to train, depending on your compute capabilities. You can view the
performance in real time in tensorboard with tensorboard --logdir ~/abmarl_results.

Visualizing the Trained Behaviors

We can visualize the agents’ learned behavior with the visualize command, which takes as argument the output
directory from the training session stored in ~/abmarl_results. For example, the command

abmarl visualize ~/abmarl_results/MultiCorridor-2020-08-25_09-30/ -n 5 --record

will load the experiment (notice that the directory name is the experiment title from the configuration file appended
with a timestamp) and display an animation of 5 episodes. The --record flag will save the animations as .mp4 videos
in the training directory.

5.1.3 Extra Challenges
Having successfully trained a MARL experiment, we can further explore the agents’ behaviors and the training process.
Some ideas are:

* We could enhance the MultiCorridor Simulation so that the “target” cell is a different location in each episode.

* We could introduce heterogeneous agents with the ability to “jump over” other agents. With heterogeneous
agents, we can nontrivially train multiple policies.

* We could study how the agents’ behaviors differ if they are trained using the AllStepManager.
* We could create our own Simulation Manager so that if an agent causes a collision, it skips its next turn.

* We could do a parameter search over both simulation and algorithm parameters to study how the parameters
affect the learned behaviors.

* We could analyze how often agents collide with one another and where those collisions most commonly occur.
¢ And much, much more!

As we attempt these extra challenges, we will experience one of Abmarl’s strongest features: the ease with which we
can modify our experiment file and launch another training job, going through the pipeline from experiment setup to
behavior visualization and analysis!

5.2 GridWorld

The GridWorld Simulation Framework is composed of feature components that fit together to allow users to create a
variety of simulations using the same pieces and to easily design their own features. We provide tutorials demonstrating
the special features of this framework. First, we create a multi-team battle simulation using built-in features compo-
nents. We then show how the exact same components can be reconfigured to create a maze-navigation simulation.
Finally, we show how easy it is to add custom features as components and plug them into the simulation framework.
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5.2.1 Team Battle

The Team Battle scenario involves multiple teams of agents fighting against each other. The goal of each team is to be
the last team alive, at which point the simulation will end. Each agent can move around the grid and attack agents from
other teams. Each agent can observe the grid around its position. We will reward each agent for successful kills and
penalize them for bad moves. This tutorial can be found in full in our repo.

Fig. 2: Agents on four teams battling each other.

First, we import the components that we need. Each component is already in Abmarl, so we don’t need to create
anything new.

from matplotlib import pyplot as plt
import numpy as np

from abmarl.sim.gridworld.base import GridWorldSimulation

from abmarl.sim.gridworld.agent import GridObservingAgent, MovingAgent, AttackingAgent,.
—.HealthAgent

from abmarl.sim.gridworld.state import HealthState, PositionState

from abmarl.sim.gridworld.actor import MoveActor, AttackActor

from abmarl.sim.gridworld.observer import SingleGridObserver

from abmarl.sim.gridworld.done import OneTeamRemainingDone

Then, we define our agent types. This simulation will only have a single type: the BattleAgent. Most of the agents’
attributes will be the same, and we can preconfigure the class definition to save us time when we create the agents later
on.

class BattleAgent(GridObservingAgent, MovingAgent, AttackingAgent, HealthAgent):
def __init__(self, **kwargs):
super().__init__(
move_range=1,

(continues on next page)
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attack_range=1,
attack_strength=1,
attack_accuracy=1,
view_range=3,
**kwargs

Having defined the BattleAgent, we then put all the components together into a single simulation.

class TeamBattleSim(GridWorldSimulation) :
def __init__(self, **kwargs):
self.agents = kwargs['agents']

# State Components
self.position_state = PositionState(**kwargs)
self.health_state = HealthState(**kwargs)

# Action Components
self.move_actor = MoveActor(**kwargs)

self.attack_actor = AttackActor(**kwargs)

# Observation Components
self.grid_observer = SingleGridObserver (**kwargs)

# Done Compoennts
self.done = OneTeamRemainingDone (**kwargs)

self.finalize()

Next we define the start state of each simulation. We lean on the State Components to perform the reset. Note that we
must track the rewards explicitly.

class TeamBattleSim(GridWorldSimulation):

def reset(self, **kwargs):
self.position_state.reset(**kwargs)
self.health_state.reset(**kwargs)

# Track the rewards
self.rewards = {agent.id: ® for agent in self.agents.values()}

Then we define how the simulation will step forward, leaning on the Acfors to process their part of the action. The
Actors’ result determine the agents’ rewards.

class TeamBattleSim(GridWorldSimulation):

def step(self, action_dict, **kwargs):
# Process attacks:
for agent_id, action in action_dict.items():
agent = self.agents[agent_id]
attacked_agent = self.attack_actor.process_action(agent, action, **kwargs)

(continues on next page)
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if attacked_agent is not None:

self.rewards[attacked_agent.id] -= 1
self.rewards[agent.id] += 1

else:
self.rewards[agent.id] -= 0.1

# Process moves

for agent_id, action in action_dict.items():
agent = self.agents[agent_id]
if agent.active:

move_result = self.move_actor.process_action(agent, action, **kwargs)
if not move_result:
self.rewards[agent.id] -= 0.1

# Entropy penalty
for agent_id in action_dict:
self.rewards[agent_id] -= 0.01

Finally, we define each of the getters using the Observers and Done components.

class TeamBattleSim(GridWorldSimulation):

def get_obs(self, agent_id, **kwargs):
agent = self.agents[agent_id]
return {
**self.grid_observer.get_obs(agent, **kwargs)

}

def get_reward(self, agent_id, **kwargs):
reward = self.rewards[agent_id]
self.rewards[agent_id] = 0
return reward

def get_done(self, agent_id, **kwargs):
return self.done.get_done(self.agents[agent_id])

def get_all_done(self, **kwargs):
return self.done.get_all_done(**kwargs)

def get_info(self, agent_id, **kwargs):
return {}

Now that we’ve defined our agents and simulation, let’s create them and run it. First, we’ll create the agents. There will
be 4 teams, so we want to color the agent by team and start them at different corners of the grid. Besides that, all agent
attributes will be the same, and here we benefit from preconfiguring the attributes in the class definition above.

colors = ['red', 'blue', 'green', 'gray'] # Team colors

positions = [np.array([1,1]), np.array([1,6]), np.array([6,1]), np.array([6,6])] # Grid.

—.corners

agents = {
f'agent{i

: BattleAgent(

(continues on next page)
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id=f'agent{i}",

encoding=i%4+1,

render_color=colors[i%4],

initial_position=positions[i%4]
) for i in range(24)

Having created the agents, we can now build the simulation. We will allow agents from the same team to occupy the
same cell and allow agents to attack other agents if they are on different teams.

overlap_map = {

1: [11,
2: [2],
3: [31,
4: [4]
}
attack_map = {
1: [2, 3, 4],
2: [1, 3, 4],
3: [1, 2, 4],
4: [1, 2, 3]
}
sim = TeamBattleSim.build_sim(
8, 8,
agents=agents,
overlapping=overlap_map,
attack_mapping=attack_map
)

Finally, we can run the simulation with random actions and visualize it. The visualization produces an animation like
the one at the top of this page.

sim.reset()
fig = plt.figure()
sim.render(fig=fig)

done_agents = set()
for i in range(50): # Run for at most 50 steps

action = {

agent.id: agent.action_space.sample() for agent in agents.values() if agent.id.

—not in done_agents

}

sim.step(action)

sim.render(fig=~fig)

if sim.get_all_done():
break
for agent in agents:
if sim.get_done(agent):
done_agents.add(agent)
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Extra Challenges

Having successfully created and run a TeamBattle simulation, we can further explore the GridWorldSimulation frame-
work. Some ideas are:

Experiment with the number of agents and the impact that has on both the SingleGridObserver and the Multi-
GridObserver.

Experiment with the number of agents per team as well as the capabilities of those agents. You might find that a
super capable agent is still effective against a team of multiple agents.

Create a Hunter-Forager simulation, where one team of agents act as immobile resources that can be foraged by
another team, which can be hunted by a third team. Try using the same components here, although you may need
to use a custom done condition.

Connect this simulation with the Reinforcement Learning capabilities of Abmarl via a Simulation Manager.
What kind of behaviors do the agents learn?

And much, much more!

5.2.2 Maze Navigation

Using the same components as we did in the Team Battle tutorial, we can create a Maze Navigation Simulation that
contains a single moving agent navigating a maze defined by wall agents in the grid. The moving agent’s goal is to
reach a target agent. We will construct the Grid by reading a grid file. This tutorial can be found in full in our repo.

Fig. 3: Agent (blue) navigating a maze to the target (green).

Note:

While we have multiple entities like walls and a target agent, the only agent that is actually doing something

is the navigation agent. We will use some custom modifications to make this simulation easier, showing that we can
easily use our components with custom modifications.
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First we import the components that we need. Each feature is already in Abmarl, and they are the same features that
we used in the Team Battle tutorial.

from matplotlib import pyplot as plt
import numpy as np

from abmarl.sim.gridworld.base import GridWorldSimulation

from abmarl.sim.gridworld.agent import GridObservingAgent, MovingAgent, GridWorldAgent
from abmarl.sim.gridworld.state import PositionState

from abmarl.sim.gridworld.actor import MoveActor

from abmarl.sim.gridworld.observer import SingleGridObserver

Then, we define our agent types. We need an MazeNavigationAgent, WallAgents to act as the barriers of the maze, and a
TargetAgent to indicate the goal. Although we have these three types, we only need to define the MazeNavigationAgent
because the WallAgent and the TargetAgent are the same as a generic GridWorldAgent.

class MazeNavigationAgent (GridObservingAgent, MovingAgent):
def __init__(self, **kwargs):
super().__init__(move_range=1, **kwargs)

Here we have preconfigured the agent with a move range of 1 becuase that makes the most sense for navigating mazes,
but we have not preconfigured the view range since that is a parameter we may want to adjust, and it is easier to adjust
it at the agent’s initialization.

Then we define the simulation using the components and define all the necessary functions. We find it convient to
explicitly store a reference to the navigation agent and the target agent. Rather than defining a new component for our
simple done condition, we just write the condition itself in the function.

class MazeNaviationSim(GridWorldSimulation):
def __init__(self, **kwargs):
self.agents = kwargs['agents']

# Store the navigation and target agents
self.navigator = kwargs['agents']['navigator']

self.target = kwargs['agents']['target']

# State Components
self.position_state = PositionState(**kwargs)

# Action Components
self.move_actor = MoveActor(**kwargs)

# Observation Components
self.grid_observer = SingleGridObserver (**kwargs)

self.finalize()

def reset(self, **kwargs):
self.position_state.reset(**kwargs)

# Since there is only one agent that produces actions, there is only one reward.
self.reward = 0

def step(self, action_dict, **kwargs):

(continues on next page)

5.2. GridWorld 47




Abmarl, Release 0.2.2

(continued from previous page)

def

def

def

def

def

# Only the navigation agent will send actions, so we pull that out
action = action_dict['navigator']
move_result = self.move_actor.process_action(self.navigator, action, **kwargs)
if not move_result:
self.reward -= 0.1

# Entropy penalty
self.reward -= 0.01
get_obs(self, agent_id, **
# pass the navigation agent itself to the observer becuase it is the only
# agent that takes observations
return {

**self.grid_observer.get_obs(self.navigator, **kwargs)

3

get_reward(self, agent_id, **kwargs):
# Custom reward function
if self.get_all_done():
self.reward = 1
reward = self.reward
self.reward = 0
return reward

get_done(self, agent_id, **kwargs):
return self.get_all_done()

get_all_done(self, **kwargs):

# We define the done condition here directly rather than creating a
# separate component for it.

return np.all(self.navigator.position == self.target.position)

get_info(self, agent_id, **kwargs):
return {}

With everything defined, we’re ready to create and run our simulation. We will create the simulation by reading a
simulation file that shows the positions of each agent type in the grid. We will use maze.txt, which looks like this:

oo =50
SEeosso=ss29 <2

oo =50
Seo=s=s9s529

WOWWOWWOOWWOWO
NOOOOOWOWWOOOO
OWWOWOOOOWWOWW
OWWOWOWWOOOOOO
OOWWWOWOOWOWWO
OWWWWHAWWOWOTWO
OWOOOO0OO0OO0OOWOWWO
OWWWOWWOWWOWOO

In order to assign meaning to the values in the grid file, we must create an object registry that maps the values in the
files to objects. We will use W for WallAgents, N for the NavigationAgent, and T for the TargetAgent. The values of the
object registry must be lambda functions that take one argument and produce an agent.

object_registry = {

(continues on next page)
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'N': lambda n: MazeNavigationAgent (
id=f'navigator',
encoding=1,
view_range=2, # Observation parameter that we can adjust as desired
render_color="blue',

'T': lambda n: GridWorldAgent(
id=f'target"',
encoding=3,
render_color="green'

'W': lambda n: GridWorldAgent(
id=f'wall{n}"',
encoding=2,
blocking=True,
render_shape="s"

Now we can create the simulation from the maze file using the object registry. We must allow the navigation agent
and the target agent to overlap since that is our done condition, and without it the simulation would never end. The
visualization produces an animation like the one at the top of this page.

file_name = 'maze.txt'
sim = MazeNaviationSim.build_sim_from_file(
file_name,

object_registry,
overlapping={1: [3], 3: [1]}

sim.reset()
fig = plt.figure()
sim.render(fig=£fig)

for i in range(100):
action = {'navigator': sim.navigator.action_space.sample()}
sim.step(action)
sim.render(fig=fig)
done = sim.get_all_done()
if done:
plt.pause(l)
break

We can examine the observation to see how the walls effect what the navigation agent can observe. An example state
and observation is given below.

-1 -2 -2 -2 -1
O 0 2 0

2 0 1 0 O
-2 2 0 2 -2
-2 -2 0 -2 -2
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Extra Challenges
We’ve created a starkly different simulation using many of the same components as we did in the TeamBattle tutorial.
We can further explore the capabilities of the GridWorld Simulation Framework, such as:

* Introduce additional navigating agents and modify the simulation so that the agents race to the target.

* Recreate pacman, frogger, and some of your favorite games from the Arcade Learning Environment. Not all
games can be recreated with these components, and some cannot be recreated at all with the GridWorld Simula-
tion Framework (because they are not grid-based).

* Connect this simulation with the Reinforcement Learning capabilities of Abmarl via a Simulation Manager.
Does the agent learng how to solve mazes quickly?

¢ And much, much more!

5.2.3 Communication Blocking

Consider a simulation in which some agents send messages to each other in an attempt to reach consensus while another
group of agents attempts to block these messages to impede consensus. Abmarl’s GridWorld Simulation Framework
already contains the features for the blocking agents; in this tutorial, we show how to create new components for the
communication feature and connect them with the simulation framework. The tutorial can be found in full in our repo.
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Fig. 4: Blockers (black) move around the maze blocking communications between broadcasters (green). The simulation
ends when the broadcasters reach consensus.

Using built-in features

Let’s start by laying the groundwork using components already in Abmarl. We create a simulation with position,
movement, and observations.

from matplotlib import pyplot as plt
import numpy as np

from abmarl.sim.gridworld.agent import MovingAgent, GridObservingAgent
from abmarl.sim.gridworld.base import GridWorldSimulation

from abmarl.sim.gridworld.state import PositionState

from abmarl.sim.gridworld.actor import MoveActor

from abmarl.sim.gridworld.observer import SingleGridObserver

class BlockingAgent (MovingAgent, GridObservingAgent):
def __init__(self, **kwargs):
super().__init__(blocking=True, **kwargs)

class BroadcastSim(GridWorldSimulation):
def __init__(self, **kwargs):
self.agents = kwargs['agents']
self.position_state = PositionState(**kwargs)
self.move_actor = MoveActor(**kwargs)
self.grid_observer = SingleGridObserver (**kwargs)

self.finalize()

(continues on next page)
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def reset(self, **kwargs):
self.position_state.reset(**kwargs)
self.rewards = {agent.id: ® for agent in self.agents.values()}

def step(self, action_dict, **kwargs):
# process moves
for agent_id, action in action_dict.items():
agent = self.agents[agent_id]

move_result = self.move_actor.process_action(agent, action, **kwargs)
if not move_result:
self.rewards[agent.id] -= 0.1

# Entropy penalty
for agent_id in action_dict:
self.rewards[agent_id] -= 0.01

def get_obs(self, agent_id, **kwargs):
agent = self.agents[agent_id]
return {
**self.grid_observer.get_obs(agent, **kwargs),

3

def get_reward(self, agent_id, **kwargs):
reward = self.rewards[agent_id]
self.rewards[agent_id] = 0
return reward

def get_done(self, agent_id, **kwargs):
pass # Define this later

def get_all_done(self, **kwargs):
pass # Define this later

def get_info(self, **kwargs):
return {}

Creating our own communication components

Next we build the communication components ourselves. We know that the GridWorld Simulation Framework is made
up of Agents, States, Actors, Observers, and Dones, so we expect that we’ll need to create each of these for our new
communication feature. Let’s start with the Agent component.

An agent communicates by broadcasting its message to other nearby agents. So we create a new agent with a broad-
cast range and an initial message. The broadcast range will be used by the BroadcastActor to determine successful
broadcasting, and the initial message, an optional parameter, will be used by the BroadcastState to set its message.

from abmarl.sim import Agent
from abmarl.sim.gridworld.agent import GridWorldAgent

class BroadcastingAgent(Agent, GridWorldAgent):
def __init__(self, broadcast_range=None, initial_message=None, **kwargs):

(continues on next page)
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super() .__init__ (**kwargs)
self.broadcast_range = broadcast_range
self.initial_message = initial_message

@property
def broadcast_range(self):
return self._broadcast_range

@broadcast_range.setter
def broadcast_range(self, value):
assert type(value) is int and value >= 0, "Broadcast Range must be a nonnegative.
—integer."
self._broadcast_range = value

@property
def initial_message(self):
return self._initial_message

@initial_message.setter
def initial_message(self, value):
if value is not None:
assert -1 <= value <= 1, "Initial message must be a number between -1 and 1."
self._initial_message = value

@property
def message(self):
return self._message

@message.setter
def message(self, value):
self._message = min(max(value, -1), 1)

@property
def configured(self):
return super().configured and self.broadcast_range is not None

Note: We could have split the BroadcastingAgent into two agents types: one type of agent that has an internal message
and another type that broadcasts. This is usually a better approach because it allows you to separate features and use
them in greater combination with other features. We put them together in this tutorial for simplicity.

Next, we create the BroadcastState. This component manages the part of the simulation state that tracks which messages
have been sent among the agents. It will be used by the BroadcastObserver to create the agent’s observations. It also
manages updates to each agent’s message.

from abmarl.sim.gridworld.state import StateBaseComponent

class BroadcastingState(StateBaseComponent) :
def reset(self, **kwargs):
for agent in self.agents.values():
if isinstance(agent, BroadcastingAgent):
if agent.initial_message is not None:

(continues on next page)
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agent.message = agent.initial_message
else:
agent.message = np.random.uniform(-1, 1)

# Tracks agents receiving messages from other agents
self.receiving_state = {
agent.id: [] for agent in self.agents.values() if isinstance(agent,..
—BroadcastingAgent)

}

def update_receipients(self, from_agent, to_agents):

e

Update messages received from other agents.

i

for agent in to_agents:
self.receiving_state[agent.id].append((from_agent.id, from_agent.message))

def update_message_and_reset_receiving(self, agent):

o

Update agent's internal message.

The agent averages all the messages that it has received from other
agents in this step.

receiving_from = self.receiving_state[agent.id]
self.receiving_state[agent.id] = []

messages = [message for _, message in receiving_from]
messages.append(agent .message)

agent.message = np.average(messages)

return receiving_from

Then we define the BroadcastActor. Similar to attacking, broadcasting will be a boolean action—either broadcast or
don’t broadcast. We provide a broadcast mapping for determining to which encodings each agent can broadcast. The
message will be successfully sent to every agent that (1) is within the broadcast range, (2) has a compatible encoding,
and (3) is not blocked.

from gym.spaces import Discrete
from abmarl.sim.gridworld.actor import ActorBaseComponent
import abmarl.sim.gridworld.utils as gu

class BroadcastingActor (ActorBaseComponent) :

o

Process sending and receiving messages between agents.

BroadcastingAgents can broadcast to compatible agents within their range
according to the broadcast mapping and if the agent is not blocked.
def __init__(self, broadcast_mapping=None, **kwargs):

super().__init__ (**kwargs)

self.broadcast_mapping = broadcast_mapping

(continues on next page)
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for agent in self.agents.values():
if isinstance(agent, self.supported_agent_type):
agent.action_space[self.key] = Discrete(2)

@property
def key(self):
return 'broadcast'’

@property
def supported_agent_type(self):
return BroadcastingAgent

@property
def broadcast_mapping(self):

o

Dict that dictates to which agents the broadcasting agent can broadcast.

The dictionary maps the broadcasting agents' encodings to a list of encodings
to which they can broadcast. For example, the folowing broadcast_mapping:
{
1: [3, 4, 57,
3: [2, 3],
}
means that agents whose encoding is 1 can broadcast other agents whose encodings
are 3, 4, or 5; and agents whose encoding is 3 can broadcast other agents whose
encodings are 2 or 3.

o

return self._broadcast_mapping

@broadcast_mapping.setter
def broadcast_mapping(self, value):
assert type(value) is dict, "Broadcast mapping must be dictionary.
for k, v in value.items():
assert type(k) is int, "All keys in broadcast mapping must be integer."
assert type(v) is list, "All values in broadcast mapping must be list."
for i in v:
assert type(i) is int, \
"All elements in the broadcast mapping values must be integers."
self._broadcast_mapping = value

def process_action(self, broadcasting_agent, action_dict, **kwargs):

i

If the agent has chosen to broadcast, then we process their broadcast.

The processing goes through a series of checks. The broadcast is successful
if there is a receiving agent such that:

1. The receiving agent is within range.

2. The receiving agent is compatible according to the broadcast_mapping.

3. The receiving agent is observable by the broadcasting agent.

If the broadcast is successful, then the receiving agent receives the message
in its observation.

(continues on next page)

5.2. GridWorld 55




Abmarl, Release 0.2.2

(continued from previous page)

o

def determine_broadcast(agent):
# Generate local grid and a broadcast mask.
local_grid, mask = gu.create_grid_and_mask(
agent, self.grid, agent.broadcast_range, self.agents

# Randomly scan the local grid for receiving agents.
receiving_agents = []
for r in range(2 * agent.broadcast_range + 1):
for c in range(2 * agent.broadcast_range + 1):
if mask[r, c]: # e can see this cell
candidate_agents = local_grid[r, c]
if candidate_agents is not None:
for other in candidate_agents.values():
if other.id == agent.id: # Cannot broadcast to yourself
continue
elif other.encoding not in self.broadcast_mapping[agent.
—encoding] :
# Cannot broadcast to this type of agent
continue
else:
receiving_agents.append(other)
return receiving_agents

if isinstance(broadcasting_agent, self.supported_agent_type):
action = action_dict[self.key]
if action: # Agent has chosen to attack
return determine_broadcast(broadcasting_agent)

Now we define the BroadcastObserver. The observer enables agents to see all received messages, including their own
current message. This observer is unique from all other components we have seen so far because it explicitly relies on
the BroadcastingState component, which will have a small impact in how we initialize the simulation.

from gym.spaces import Dict, Box
from abmarl.sim.gridworld.observer import ObserverBaseComponent

class BroadcastObserver(ObserverBaseComponent) :
def __init__(self, broadcasting_state=None, **kwargs):
super().__init__ (**kwargs)

assert isinstance(broadcasting_state, BroadcastingState), \
"broadcasting_state must be an instance of BroadcastingState"
self._broadcasting_state = broadcasting_state

for agent in self.agents.values():
if isinstance(agent, self.supported_agent_type):
agent.observation_space[self.key] = Dict({
other.id: Box(-1, 1, (1,))
for other in self.agents.values() if isinstance(other, self.
—,supported_agent_type)
b

(continues on next page)
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@property
def key(self):
return 'message’

@property
def supported_agent_type(self):
return BroadcastingAgent

def get_obs(self, agent, **kwargs):
if not isinstance(agent, self.supported_agent_type):
return {}

obs = {other: 0 for other in agent.observation_space[self.key]}
receive_from = self._broadcasting_state.update_message_and_reset_receiving(agent)
for agent_id, message in receive_from:
obs[agent_id] = message
obs[agent.id] = agent.message
return obs

Finally, we can create a custom done condition. We want the broadcasting agents to finish when they’ve reached
consensus; that is, when their internal message is within some tolerance of the average message.

from abmarl.sim.gridworld.done import DoneBaseComponent

class AveragelMessageDone(DoneBaseComponent) :
def __init__(self, done_tolerance=None, **kwargs):
super() .__init__(**kwargs)
self.done_tolerance = done_tolerance

@property
def done_tolerance(self):
return self._done_tolerance

@done_tolerance.setter

def done_tolerance(self, value):
assert type(value) in [int, float], "Done tolerance must be a number."
assert value > 0, "Done tolerance must be positive."
self._done_tolerance = value

def get_done(self, agent, **kwargs):
if isinstance(agent, BroadcastingAgent):
average = np.average([
other.message for other in self.agents.values()
if isinstance(other, BroadcastingAgent)
D
return np.abs(agent.message - average) <= self.done_tolerance
else:
return False

def get_all_done(self, **kwargs):
for agent in self.agents.values():

(continues on next page)
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if isinstance(agent, BroadcastingAgent):
if not self.get_done(agent):
return False
return True

Building and running the simulation

Now that all the components have been created, we can create the full simulation:

from abmarl.sim.gridworld.base import GridWorldSimulation

class BroadcastSim(GridWorldSimulation):
def __init__(self, **kwargs):
self.agents = kwargs['agents']

self.position_state = PositionState(**kwargs)
self.broadcasting_state = BroadcastingState(**kwargs)

self.move_actor = MoveActor (**kwargs)
self.broadcast_actor = BroadcastingActor (**kwargs)

self.grid_observer = SingleGridObserver (**kwargs)
self.broadcast_observer = BroadcastObserver(broadcasting_state=self.broadcasting_
—,state, **kwargs)

self.done = AverageMessageDone (**kwargs)
self.finalize()

def reset(self, **kwargs):
self.position_state.reset(**kwargs)
self.broadcasting_state.reset(**kwargs)

self.rewards = {agent.id: ® for agent in self.agents.values()}

# process broadcasts
for agent_id, action in action_dict.items():
agent = self.agents[agent_id]
receiving_agents = self.broadcast_actor.process_action(agent, action,.
—**kwargs)
if receiving_agents is not None:
self.broadcasting_state.update_receipients(agent, receiving_agents)

# process moves
for agent_id, action in action_dict.items():
agent = self.agents[agent_id]

move_result = self.move_actor.process_action(agent, action, **kwargs)
if not move_result:
self.rewards[agent.id] -= 0.1

(continues on next page)
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# Entropy penalty
for agent_id in action_dict:
self.rewards[agent_id] -= 0.01

def render(self, **kwargs):
super () .render (**kwargs)
for agent in self.agents.values(Q):
if isinstance(agent, BroadcastingAgent):
print(f"{agent.id}: {agent.message}")
print()

def get_obs(self, agent_id, **kwargs):
agent = self.agents[agent_id]

return {
**self.grid_observer.get_obs(agent, **kwargs),
**self.broadcast_observer.get_obs(agent, **kwargs)
}

def get_reward(self, agent_id, **kwargs):
reward = self.rewards[agent_id]
self.rewards[agent_id] = 0
return reward

def get_done(self, agent_id, **kwargs):
return self.done.get_done(agent_id, **kwargs)

def get_all_done(self, **kwargs):
return self.done.get_all_done(**kwargs)

def get_info(self, **kwargs):
return {}

Let’s initialize our simulation and run it. We initialize some BroadcastingAgents and some BlockingAgents. Then we
initialize the simulation with a broadcast mapping that specifies that broadcasts can only be made amont agents with

encoding 1, which are the BroadcastingAgents.

agents = {

'"broadcaster®': BroadcastingAgent(id='broadcaster®',
—render_color="green'),

'broadcasterl': BroadcastingAgent(id='broadcasterl',
—render_color="green'),

'broadcaster2': BroadcastingAgent(id='broadcaster2',
—render_color="green'),

'broadcaster3': BroadcastingAgent(id='broadcaster3"',
—render_color="green'),

'blocker®': BlockingAgent(id='blocker®', encoding=2,
—render_color="'black"),

'blockerl': BlockingAgent(id='blockerl', encoding=2,
—render_color="black'),

'blocker2': BlockingAgent(id="blocker2', encoding=2,
—render_color="black'),

}

encoding=1, broadcast_range=6,..
encoding=1, broadcast_range=6,..
encoding=1, broadcast_range=6,..
encoding=1, broadcast_range=6,..
move_range=2, view_range=3,.
move_range=1, view_range=3,.

move_range=1, view_range=3,..

(continues on next page)
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sim = BroadcastSim.build_sim(
7, 7,
agents=agents,
broadcast_mapping={1: [1]},
done_tolerance=5e-10

)

sim.reset()
fig = plt.figure()
sim.render(fig=fig)

done_agents = set()
for i in range(50):
action = {
agent.id: agent.action_space.sample() for agent in agents.values() if agent.id.
—not in done_agents
}
sim.step(action)
for agent in agents:
if agent not in done_agents:
obs = sim.get_obs(agent)
if sim.get_done(agent):
done_agents.add(agent)

sim.render(fig=£fig)
if sim.get_all_done():
break

The visualization produces an animation like the one at the top of this page. We can see the “path towards consensus”
among the BroadcastingAgents in the output. Keep your eye open for the effects of blocking.

Step 1

broadcaster®: 0.5936447861764813
broadcasterl: -0.8344218389696239
broadcaster2: 0.09891331950679949
broadcaster3: 0.32590416873488093

Step 2

broadcaster®: 0.028375705313912796
broadcasterl: -0.25425883511737146
broadcaster2: -0.13653478357598114
broadcaster3: -0.25425883511737146

For steps 3-5, notice that Broadcaster3 is blocked. The other broadcasters
have reached a consensus, but the simulation does not end becaue they must all
agree.

Step 3

broadcaster®: -0.12080597112647994
broadcasterl: -0.12080597112647994
broadcaster2: -0.12080597112647995
broadcaster3: -0.15416918712420283

(continues on next page)
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Step 4

broadcaster®: -0.12080597112647994
broadcasterl: -0.12080597112647994
broadcaster2: -0.12080597112647995
broadcaster3: -0.15416918712420283

Step 5

broadcaster®: -0.12080597112647994
broadcasterl: -0.12080597112647994
broadcaster2: -0.12080597112647995
broadcaster3: -0.15416918712420283

Broadcaster3 is no longer blocked
Step 6

broadcaster®: -0.12080597112647995
broadcasterl: -0.12080597112647995
broadcaster2: -0.12080597112647995
broadcaster3: -0.1319270431257209

Step 16

broadcaster®: -0.1241744002450772
broadcasterl: -0.12417639653661512
broadcaster2: -0.12417523451616769
broadcaster3: -0.12417511533458334

Step 17

broadcaster®: -0.12417528665811084
broadcasterl: -0.12417528665811083
broadcaster2: -0.12417528665811083
broadcaster3: -0.12417528665811084

Extra Challenges

Having successfully created new components and fit them into the GridWorld Simulation Framework, we can create a
vast variety of different simulations, constrained primarily by our own imagination. We leave the extra challenges up
to you and what you can think of.
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CHAPTER
SIX

ABMARL API SPECIFICATION

6.1 Abmarl Simulations

class abmarl.sim.PrincipleAgent (id=None, seed=None, **kwargs)

Principle Agent class for agents in a simulation.

property active
True if the agent is still active in the simulation.

Active means that the agent is in a valid state. For example, suppose agents in our Simulation can die. Then
active is True if the agents are alive or False if they’re dead.

property configured

All agents must have an id.
finalize(**kwargs)
property id

The agent’s unique identifier.

property seed

Seed for random number generation.

class abmarl.sim.ObservingAgent (observation_space=None, **kwargs)
ObservingAgents can observe the state of the simulation.

The agent’s observation must be in its observation space. The SimulationManager will send the observation to
the Trainer, which will use it to produce actions.

property configured

Observing agents must have an observation space.

finalize(**kwargs)

Wrap all the observation spaces with a Dict and seed it if the agent was created with a seed.
property observation_space
class abmarl.sim.ActingAgent (action_space=None, **kwargs)
ActingAgents can act in the simulation.

The Trainer will produce actions for the agents and send them to the SimulationManager, which will process
those actions in its step function.

property action_space
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property configured
Acting agents must have an action space.
finalize(**kwargs)

Wrap all the action spaces with a Dict if applicable and seed it if the agent was created with a seed.

class abmarl.sim.Agent (observation_space=None, **kwargs)

Bases: ObservingAgent, ActingAgent

An Agent that can both observe and act.

class abmarl.sim.AgentBasedSimulation

AgentBasedSimulation interface.

Under this design model the observations, rewards, and done conditions of the agents is treated as part of the
simulations internal state instead of as output from reset and step. Thus, it is the simulations responsibility to
manage rewards and dones as part of its state (e.g. via self.rewards dictionary).

This interface supports both single- and multi-agent simulations by treating the single-agent simulation as a
special case of the multi-agent, where there is only a single agent in the agents dictionary.
property agents

A dict that maps the Agent’s id to the Agent object. An Agent must be an instance of PrincipleAgent.
A multi-agent simulation is expected to have multiple entries in the dictionary, whereas a single-agent
simulation should only have a single entry in the dictionary.

finalize()

Finalize the initialization process. At this point, every agent should be configured with action and observa-
tion spaces, which we convert into Dict spaces for interfacing with the trainer.

abstract get_all_done(**kwargs)
Return the simulation’s done status.
abstract get_done(agent_id, **kwargs)
Return the agent’s done status.
abstract get_info(agent_id, **kwargs)
Return the agent’s info.
abstract get_obs(agent_id, **kwargs)
Return the agent’s observation.
abstract get_reward(agent_id, **kwargs)
Return the agent’s reward.
abstract render (**kwargs)
Render the simulation for vizualization.
abstract reset(**kwargs)
Reset the simulation simulation to a start state, which may be randomly generated.

abstract step(action, **kwargs)

Step the simulation forward one discrete time-step. The action is a dictionary that contains the action of
each agent in this time-step.
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6.2 Abmarl Simulation Managers

class abmarl.managers.SimulationManager (sim)
Control interaction between Trainer and AgentBasedSimulation.

A Manager implmenents the reset and step API, by which it calls the AgentBasedSimulation API, using the
getters within reset and step to accomplish the desired control flow.

sim
The AgentBasedSimulation.

agents
The agents that are in the AgentBasedSimulation.

render (**kwargs)

abstract reset(**kwargs)
Reset the simulation.
Returns
The first observation of the agent(s).
abstract step(action_dict, **kwargs)
Step the simulation forward one discrete time-step.

Parameters
action_dict — Dictionary mapping agent(s) to their actions in this time step.

Returns

The observations, rewards, done status, and info for the agent(s) whose actions we expect to
receive next.

Note: We do not necessarily return anything for the agent whose actions we just received in
this time-step. This behavior is defined by each Manager.
class abmarl.managers.TurnBasedManager (sim)
The TurnBasedManager allows agents to take turns. The order of the agents is stored and the obs of the first agent
is returned at reset. Each step returns the info of the next agent “in line”. Agents who are done are removed from
this line. Once all the agents are done, the manager returns all done.
reset (**kwargs)
Reset the simulation and return the observation of the first agent.

step (action_dict, **kwargs)
Assert that the incoming action does not come from an agent who is recorded as done. Step the simulation
forward and return the observation, reward, done, and info of the next agent. If that next agent finished in
this turn, then include the obs for the following agent, and so on until an agent is found that is not done. If
all agents are done in this turn, then the wrapper returns all done.

class abmarl.managers.AllStepManager (sim)

The AllStepManager gets the observations of all agents at reset. At step, it gets the observations of all the agents

that are not done. Once all the agents are done, the manager returns all done.

reset (**kwargs)
Reset the simulation and return the observation of all the agents.
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step (action_dict, **kwargs)

Assert that the incoming action does not come from an agent who is recorded as done. Step the simulation
forward and return the observation, reward, done, and info of all the non-done agents, including the agents
that were done in this step. If all agents are done in this turn, then the manager returns all done.

6.3 Abmarl External Integration

class abmarl.external.GymWrapper (sim)

Wrap an AgentBasedSimulation object with only a single agent to the gym.Env interface. This wrapper exposes
the single agent’s observation and action space directly in the simulation.

property action_space

The agent’s action space is the environment’s action space.
property observation_space

The agent’s observation space is the environment’s observation space.
render (**kwargs)

Forward render calls to the composed simulation.
reset (**kwargs)

Return the observation from the single agent.
step (action, **kwargs)

Wrap the action by storing it in a dict that maps the agent’s id to the action. Pass to sim.step. Return the
observation, reward, done, and info from the single agent.

property unwrapped

Fall through all the wrappers and obtain the original, completely unwrapped simulation.

class abmarl.external.MultiAgentWrapper (sim)

Enable connection between SimulationManager and RLIib Trainer.

Wraps a SimulationManager and forwards all calls to the manager. This class is boilerplate and needed because
RLIib checks that the simulation is an instance of MultiAgentEnv.

sim
The SimulationManager.
render (*args, **kwargs)
See SimulationManager.

reset()

See SimulationManager.
step (actions)

See SimulationManager.
property unwrapped

Fall through all the wrappers to the SimulationManager.

Returns
The wrapped SimulationManager.
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6.4 Abmarl GridWorld Simulation Framework

6.4.1 Base

class abmarl.sim.gridworld.base.GridWorldSimulation

GridWorldSimulation interface.

Extends the AgentBasedSimulation interface for the GridWorld. We provide builders for streamlining the build-
ing process.

classmethod build_sim(rows, cols, **kwargs)
Build a GridSimulation.

Specify the number of row, the number of cols, a dictionary of agents, and any additional parameters.
Parameters
e rows — The number of rows in the grid. Must be a positive integer.
¢ cols — The number of cols in the grid. Must be a positive integer.
* agents — The dictionary of agents in the grid.

Returns
A GridSimulation configured as specified.
classmethod build_sim_from_f£file (file_name, object_registry, **kwargs)
Build a GridSimulation from a text file.

Parameters

» file_name — Name of the file that specifies the initial grid setup. In the file, each cell
should be a single alphanumeric character indicating which agent will be at that position
(from the perspective of looking down on the grid). That agent will be given that initial
position. 0’s are reserved for empty space.

¢ object_registry — A dictionary that maps characters from the file to a function that
generates the agent. This must be a function because each agent must have unique id,
which is generated here.

Returns
A GridSimulation built from the file.

render (fig=None, **kwargs)
Draw the grid and all active agents in the grid.
Agents are drawn at their positions using their respective shape and color.

Parameters
fig — The figure on which to draw the grid. It’s important to provide this figure because the
same figure must be used when drawing each state of the simulation. Otherwise, a ton of
figures will pop up, which is very annoying.
class abmarl.sim.gridworld.base.GridWorldBaseComponent (agents=None, grid=None, **kwargs)
Component base class from which all components will inherit.

Every component has access to the dictionary of agents and the grid.

property agents
A dict that maps the Agent’s id to the Agent object. All agents must be GridWorldAgents.
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property cols

The number of columns in the grid.

property grid
The grid indexes the agents by their position.

For example, an agent whose position is (3, 2) can be accessed through the grid with self.grid[3, 2].
Components are responsible for maintaining the connection between agent position and grid index.

property rows
The number of rows in the grid.

class abmarl.sim.gridworld.grid.Grid(rows, cols, overlapping=None, **kwargs)

A Grid stores the agents at indices in a numpy array.

Components can interface with the Grid. Each index in the grid is a dictionary that maps the agent id to the agent
object itself. If agents can overlap, then there may be more than one agent per cell.

Parameters
* rows — The number of rows in the grid.
* cols — The number of columns in the grid.

» overlapping - Dictionary that maps the agents’ encodings to a list of encodings with which
they can occupy the same cell. To avoid undefined behavior, the overlapping should be sym-
metric, so that if 2 can overlap with 3, then 3 can also overlap with 2.

property cols
The number of columns in the grid.

place (agent, ndx)
Place an agent at an index.

If the cell is available, the agent will be placed at that index in the grid and the agent’s position will be
updated. The placement is successful if the new position is unoccupied or if the agent already occupying
that position is overlappable AND this agent is overlappable.

Parameters
* agent — The agent to place.
e ndx — The new index for this agent.

Returns
The successfulness of the placement.

query (agent, ndx)
Query a cell in the grid to see if is available to this agent.

The cell is available for the agent if it is empty or if both the occupying agent and the querying agent are
overlappable.

Parameters
» agent — The agent for which we are checking availabilty.
e ndx — The cell to query.

Returns
The availability of this cell.
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remove (agent, ndx)

Remove an agent from an index.
Parameters
* agent — The agent to remove
¢ ndx — The old index for this agent

reset (**kwargs)
Reset the grid to an empty state.

property rows

The number of rows in the grid.

6.4.2 Agents

class abmarl.sim.gridworld.agent.GridWorldAgent (initial_position=None, blocking=False,
encoding=None, render_shape='0',
render_color="gray’, **kwargs)

The base agent in the GridWorld.
property blocking
Specify if this agent blocks other agent’s observations and actions.
property configured
All agents must have an id.
property encoding
The numerical value that identifies the type of agent.

The value does not necessarily identify the agent itself. For example, other agents who observe this agent
will see this value.

property initial_position
The agent’s initial position at reset.
property position
The agent’s position in the grid.
property render_color
The agent’s color in the rendered grid.
property render_shape
The agent’s shape in the rendered grid.
class abmarl.sim.gridworld.agent.GridObservingAgent (view_range=None, **kwargs)
Observe the grid up to view range cells away.
property configured
Observing agents must have an observation space.
property view_range
The number of cells away this agent can observe in each step.
class abmarl.sim.gridworld.agent.MovingAgent (move_range=None, **kwargs)

Move up to move_range cells.
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property configured

Acting agents must have an action space.

property move_range

The maximum number of cells away that the agent can move.

class abmarl.sim.gridworld.agent.HealthAgent (initial_health=None, **kwargs)

Agents have health points and can die.
Health is bounded between 0 and 1.

property active
The agent is active if its health is greater than 0.

property health
The agent’s health throughout the simulation trajectory.

The health will always be between 0 and 1.

property initial_health
The agent’s initial health between 0 and 1.

class abmarl.sim.gridworld.agent.AttackingAgent (attack_range=None, attack_strength=None,
attack_accuracy=None, **kwargs)

Agents that can attack other agents.

property attack_accuracy
The effective accuracy of the agent’s attack.

Should be between 0 and 1. To make deterministic attacks, use 1.

property attack_range

The maximum range of the attack.

property attack_strength
The strength of the attack.

Should be between 0 and 1.

property configured
Acting agents must have an action space.

6.4.3 State

class abmarl.sim.gridworld.state.StateBaseComponent (agents=None, grid=None, **kwargs)

Abstract State Component base from which all state components will inherit.

abstract reset(**kwargs)

Resets the part of the state for which it is responsible.

class abmarl.sim.gridworld.state.PositionState(agents=None, grid=None, **kwargs)

Manage the agents’ positions in the grid.

reset (**kwargs)

Give agents their starting positions.

We use the agent’s initial position if it exists. Otherwise, we randomly place the agents in the grid.
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class abmarl.sim.gridworld.state.HealthState (agents=None, grid=None, **kwargs)
Manage the state of the agents’ healths.

Every HealthAgent has a health. If that health falls to zero, that agent dies and is remove from the grid.

reset (**kwargs)
Give HealthAgents their starting healths.

We use the agent’s initial health if it exists. Otherwise, we randomly assign a value between 0 and 1.

6.4.4 Actors

class abmarl.sim.gridworld.actor.ActorBaseComponent (agents=None, grid=None, **kwargs)

Abstract Actor Component class from which all Actor Components will inherit.

abstract property key

The key in the action dictionary.

The action space of all acting agents in the gridworld framework is a dict. We can build up complex action
spaces with multiple components by assigning each component an entry in the action dictionary. Actions
will be a dictionary even if your simulation only has one Actor.

abstract process_action(agent, action_dict, **kwargs)

Process the agent’s action.
Parameters
* agent — The acting agent.

¢ action_dict - The action dictionary for this agent in this step. The dictionary may have
different entries, each of which will be processed by different Actors.

abstract property supported_agent_type
The type of Agent that this Actor works with.

If an agent is this type, the Actor will add its entry to the agent’s action space and will process actions for
this agent.

class abmarl.sim.gridworld.actor.MoveActor (**kwargs)

Agents can move to unoccupied nearby squares.

property key
This Actor’s key is “move”.

process_action(agent, action_dict, **kwargs)
The agent can move to nearby squares.

The agent’s new position must be within the grid and the cell-occupation rules must be met.
Parameters
* agent — Move the agent if it is a MovingAgent.

e action_dict — The action dictionary for this agent in this step. If the agent is a Movin-
gAgent, then the action dictionary will contain the “move” entry.

Returns
True if the move is successful, False otherwise.
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property supported_agent_type
This Actor works with MovingAgents.

class abmarl.sim.gridworld.actor.AttackActor (attack_mapping=None, **kwargs)

Agents can attack other agents.

property attack_mapping
Dict that dictates which agents the attacking agent can attack.

The dictionary maps the attacking agents’ encodings to a list of encodings that they can attack.

property key
This Actor’s key is “attack”.

process_action(attacking_agent, action_dict, **kwargs)
If the agent has chosen to attack, then we process their attack.

The processing goes through a series of checks. The attack is possible if there is an attacked agent such
that:

1. The attacked agent is active.
2. The attacked agent is within range.
3. The attacked agent is valid according to the attack_mapping.

If the attack is possible, then we determine the success of the attack based on the attacking agent’s accuracy.
If the attack is successful, then the attacked agent’s health is depleted by the attacking agent’s strength,
possibly resulting in its death.

property supported_agent_type
This Actor works with AttackingAgents.

6.4.5 Observers

class abmarl.sim.gridworld.observer.ObserverBaseComponent (agents=None, grid=None, **kwargs)
Abstract Observer Component base from which all observer components will inherit.
abstract get_obs(agent, **kwargs)
Observe the state of the simulation.

Parameters
agent — The agent for which we return an observation.

Returns
This agent’s observation.
abstract property key
The key in the observation dictionary.
The observation space of all observing agents in the gridworld framework is a dict. We can build up complex
observation spaces with multiple components by assigning each component an entry in the observation
dictionary. Observations will be a dictionary even if your simulation only has one Observer.
abstract property supported_agent_type
The type of Agent that this Observer works with.

If an agent is this type, the Observer will add its entry to the agent’s observation space and will produce
observations for this agent.
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class abmarl.sim.gridworld.observer.SingleGridObserver (observe_self=True, **kwargs)
Observe a subset of the grid centered on the agent’s position.
The observation is centered around the observing agent’s position. Each agent in the “observation window”

is recorded in the relative cell using its encoding. If there are multiple agents on a single cell with different
encodings, the agent will observe only one of them chosen at random.

get_obs (agent, **kwargs)

The agent observes a sub-grid centered on its position.

The observation may include other agents, empty spaces, out of bounds, and masked cells, which can be
blocked from view by other blocking agents.

Returns
The observation as a dictionary.
property key
This Observer’s key is “grid”.
property observe_self
Agents can observe themselves, which may hide important information if overlapping is important. This
can be turned off by setting observe_self to False.
property supported_agent_type
This Observer works with GridObservingAgents.
class abmarl.sim.gridworld.observer.MultiGridObserver (**kwargs)
Observe a subset of the grid centered on the agent’s position.
The observation is centered around the observing agent’s position. The observing agent sees a stack of obser-

vations, one for each positive encoding, where the number of agents of each encoding is given rather than the
encoding itself. Out of bounds and masked indicators appear in every grid.

get_obs (agent, **kwargs)
The agent observes one or more sub-grids centered on its position.
The observation may include other agents, empty spaces, out of bounds, and masked cells, which can be

blocked from view by other blocking agents. Each grid records the number of agents on a particular cell
correlated to a specific encoding.

Returns
The observation as a dictionary.

property key
This Observer’s key is “grid”.
property supported_agent_type
This Observer works with GridObservingAgents.
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6.4.6 Done

class abmarl.sim.gridworld.done.DoneBaseComponent (agents=None, grid=None, **kwargs)

Abstract Done Component class from which all Done Components will inherit.

abstract get_all_done (**kwargs)

Determine if all the agents are done and/or if the simulation is done.

Returns
True if all agents are done or if the simulation is done. Otherwise False.

abstract get_done(agent, **kwargs)
Determine if an agent is done in this step.

Parameters
agent — The agent we are querying.

Returns
True if the agent is done, otherwise False.

class abmarl.sim.gridworld.done.ActiveDone (agents=None, grid=None, **kwargs)
Inactive agents are indicated as done.
get_all_done(**kwargs)
Return True if all agents are inactive. Otherwise, return False.

get_done (agent, **kwargs)
Return True if the agent is inactive. Otherwise, return False.

class abmarl.sim.gridworld.done.OneTeamRemainingDone (agents=None, grid=None, **kwargs)

Inactive agents are indicated as done.
If the only active agents are those who are all of the same encoding, then the simulation ends.

get_all_done (**kwargs)
Return true if all active agents have the same encoding. Otherwise, return false.

6.4.7 Wrappers

class abmarl.sim.gridworld.wrapper.ComponentWrapper (agents=None, grid=None, **kwargs)

Wraps GridWorldBaseComponent.

Every wrapper must be able to wrap the respective space and points to/from that space. Agents and Grid are
referenced directly from the wrapped component rather than received as initialization parameters.

property agents

The agent dictionary is directly taken from the wrapped component.
abstract check_space(space)

Verify that the space can be wrapped.
property grid

The grid is directly taken from the wrapped component.

property unwrapped
Fall through all the wrappers and obtain the original, completely unwrapped component.
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abstract wrap_point (space, point)
Wrap a point to the space.

Parameters
» space — The space into which to wrap the point.
¢ point — The point to wrap.
abstract wrap_space (space)
Wrap the space.

Parameters
space — The space to wrap.

abstract property wrapped_component
Get the first-level wrapped component.

class abmarl.sim.gridworld.wrapper.ActorWrapper (component)
Wraps an ActorComponent.

Modify the action space of the agents involved with the Actor, namely the specific actor’s channel. The actions
recieved from the trainer are in the wrapped space, so we need to unwrap them to send them to the actor. This is
the opposite from how we wrap and unwrap observations.

property key
The key is the same as the wrapped actor’s key.

process_action(agent, action_dict, **kwargs)

Unwrap the action and pass it to the wrapped actor to process.
Parameters
* agent — The acting agent.

e action_dict — The action dictionary for this agent in this step. The action in this channel
comes in the wrapped space.

property supported_agent_type

The supported agent type is the same as the wrapped actor’s supported agent type.
property wrapped_component

Get the wrapped actor.

class abmarl.sim.gridworld.wrapper.RavelActionWrapper (component)

Use numpy’s ravel capabilities to convert space and points to Discrete.
check_space(space)

Ensure that the space is of type that can be ravelled to discrete value.
wrap_point (space, point)

Unravel a single discrete point to a value in the space.

Recall that the action from the trainer arrives in the wrapped discrete space, so we need to unravel it so that
it is in the unwrapped space before giving it to the actor.

wrap_space (space)
Convert the space into a Discrete space.
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